
Visual Paradigm
NetBeans Tutorial: How to Access Database WITHOUT SQL?

Tutorial

https://www.visual-paradigm.com/tutorials/hibernateinnetbeans.jsp Page 1 of 5

NetBeans Tutorial: How to Access Database WITHOUT
SQL?
Written Date : April 22, 2016

Object relational Mapping (ORM) is a way to virtually map Java objects with relational database to
aid in object-oriented programming. Hibernate is one of the most popular ORM framework on the
market. With Visual Paradigm NetBeans Integration, one of the most popular IDE on the market, you
can have an all-in-one modeling plugin for your NetBeans IDE. You can design database with ERD
tool and design system with UML diagrams. You can also generate database and executable Java
Hibernate source code out of your diagrams.

In this tutorial, we will show you the step-by-step procedure to try out object-relational mapping
by first, define the data model in ERD with sample data, then generate class diagram from ERD,
generate database and hibernate code and finally use the generated hibernate code to insert data
to database and retrieve data from database. As the focus of this tutorial is how you can work with
hibernate together with NetBeans and Visual Paradigm, a minimal example will be used. Visual
Paradigm, NetBeans 8.0.1 and Microsoft SQL Server will be used in this tutorial.

Getting started
We assume you have the SQL Server, NetBeans and Visual Paradigm being installed. Now let's get
started. We first create a database in our SQL Server.

Setup your database

To setup a database in SQL Server:

1. Login your SQL Server via Microsoft SQL Server Management Studio.

https://en.wikipedia.org/wiki/Object-relational_mapping
http://hibernate.org/
https://circle.visual-paradigm.com/docs/ide-integration/netbeans/how-to-integrate-visual-paradigm-with-netbeans/
https://netbeans.org/
https://www.visual-paradigm.com/features/uml-tool/
https://www.java.com/en/
https://www.visual-paradigm.com/
https://www.visual-paradigm.com/
http://www.microsoft.com/en-us/server-cloud/products/sql-server/

Visual Paradigm
NetBeans Tutorial: How to Access Database WITHOUT SQL?

Tutorial

https://www.visual-paradigm.com/tutorials/hibernateinnetbeans.jsp Page 2 of 5

2. Right-click on the Databases node in Object Explorer and select New Database... from the
popup menu.

3. Enter the name of the database. In this tutorial, we name the database as AutoPartsStore.

4. Click OK to create the database.

Creating Java project in NetBeans

1. Start the NetBeans IDE.

2. Click the New Project button at the toolbar to open the New Project window.

Visual Paradigm
NetBeans Tutorial: How to Access Database WITHOUT SQL?

Tutorial

https://www.visual-paradigm.com/tutorials/hibernateinnetbeans.jsp Page 3 of 5

3. In the New Project window, select Java category and choose Java Class Library as the
project type. Click Next.

4. Enter Auto Parts Store in the Project Name field. Leave other settings as default and click
Finish to create the project.

Visual Paradigm
NetBeans Tutorial: How to Access Database WITHOUT SQL?

Tutorial

https://www.visual-paradigm.com/tutorials/hibernateinnetbeans.jsp Page 4 of 5

Starting Visual Paradigm in NetBeans

Now, we have to start up Visual Paradigm in NetBeans.
1. Right-click on your Java class library project and select Open Visual Paradigm from the popup

menu.

2. If you see the Memory Requirement dialog box, please keep the option Configure "etc/
netbeans.conf" only and click OK to restart NetBeans, and then re-perform the previous step
to open Visual Paradigm.

3. You may be prompted to specify the location of your Visual Paradigm project. In this case,
simply select Create in default path and click OK to proceed.

Configure database for your NetBeans project

Before the modeling start, we have to specify the database configuration for our project first.

1. Select Modeling > ORM > Database Configuration... from the main menu

2. Select MS SQL Server from the database list.

3. Select 2008 or higher in the Version field.

4. Leave the Driver field unchanged (selecting jDTS Driver), then press the green down arrow
button to download the required driver. You may need to specify your proxy server for accessing
Internet and for downloading the driver.

5. Next, fill in the hostname, port number, the Database name as well as your User name and
Password to access for the database.

6. Click Test Connection to make sure the connection setting we defined is correct.

Now, everything is ready and we can start creating our data model.

Create data model with ERD
We can start create data model for our project.

1. Right-click on Entity Relationship Diagram in Diagram Navigator and select New Entity
Relationship Diagram from the popup menu.

2. Select Entity in the diagram toolbar and click on the diagram to create an entity. Name it
Category.

3. Right-click on the entity and select New Column.

4. Enter +ID : int to create a primary key with ID as name and int as type.

5. Press Enter to confirm and create one more column. Enter name : varchar(50) as column name.
Press Enter again to confirm and press Esc to cancel editing.

6. Move the mouse pointer over the Category entity. Press and drag out the Resource Catalog
icon at top right.

7. Release the mouse button and select One-to-Many Relationship -> Entity from Resource
Catalog.

8. Name the entity Parts.

9. Create three columns to Parts, +ID : int as primary key, name : varchar(100) for the name of the
parts, and stockQTY : int for the availability of the parts.

Creating sample data

We can fill in some sample data for our data model in ERD. This will allow those sample data to be
generated to database along with your database schema, which can be very useful in system testing.

1. Right-click on the blank area of the ERD and select Show Table Record Editor or View Editor
from the popup menu.

2. Select the entity Category in diagram and enter two sample categories in the editor - Brake and
Engine.

3. Now, select the entity Parts and create two sample parts - the Brake Pads with quantity 250,
which is under the Brake category; and the Oil Filter with quantity 500, which is under the
Engine category. You can click the ... button in the foreign column (i.e. Category) to open the
selected category which you have defined instead of manually entering its value.

Generate class model from ERD

We have finished designing the database with ERD. Now, we can generate a class model from it. To
generate the class model out of your ERD:

1. Select Modeling > ORM > Synchronize to Class Diagram from the main menu.

2. Click OK in the Synchronize from Entity Relationship Diagram to Class Diagram window.

3. Click OK again in the Synchronize to Class Diagram window.

4. The class diagram is generated. Click the package header <default package> and enter
autopartstore as the package our class model. Without specifying a package, all the classes will
be placed to the project root, which may make it hard to manage.

The data models are ready and we can proceed to generating Hibernate source code as well as the
database.

Generate code and database

To generate Hibernate source code and the database:

1. Select Modeling > ORM > Generate Code... from the main menu.

2. Make sure we have selected Code and Database in the Generate field.

3. In the Code tab, select Hibernate XML as the persistence Framework.

4. Select DAO as the Persistent API.

5. Switch to the Database tab and select Export to database to have the database schema
directly generated to database.

6. In the Generate Sample Data field, select Yes (With Auto Generated PK) for having sample
data automatically inserted into database.

7. Click OK to proceed.

After that, the tables with their sample data will be generated directly to the database. You can view
them in the SQL Server Management Studio.

Programming with generated Hibernate code
Here comes the core part of this tutorial - to use the generated Hibernate code.

Inserting records to database

1. Open the ormsamples.CreateAutoPartsStoreData.java.

2. Let's comment out the code that inserts sample data into the database, and write our own code.

3. The sample code already has the basic template for objects creation. Let's modify them to insert
our own data. Let's define the name for the instance lautopartstoreCategory as Air-Con by using
the setter method.

PersistentTransaction t = autopartstore.AutoPartsStorePersistentManager.instance()
 .getSession().beginTransaction();
try {
autopartstore.Category lautopartstoreCategory =
autopartstore.CategoryDAO.createCategory();
lautopartstoreCategory.setName("Air-Con");
...

4. For the lautopartstoreParts, specify its name as AC Filter with quantity 100.

...
autopartstore.Parts lautopartstoreParts =
autopartstore.PartsDAO.createParts();
lautopartstoreParts.setName("AC Filter");
lautopartstoreParts.setStockQTY(100);
...

5. Next, we are going to associate the lautopartstoreCategory with lautopartstoreParts. Since one
category contains many parts (remember that we defined it as one-to-many relationship?), we
can associate them by using the collection in the generated code. The name of the collection
is generated based on the role name in the association, in this case, it is the parts variable in
Category class.

...
lautopartstoreCategory.parts.add(lautopartstoreParts);
...

Your code should look like the following.

6. Now, let's try out the program. Right-click on the blank area of the code editor and select Run
File from the popup menu.

7. Open SQL Server Management Studio again and you will find that the Air-Con category and
the AC Filter parts being inserted into database.

Retrieving records from database

Let's retrieve data using the Hibernate code.

1. Open the ListAutoPartsStoreData.java.

2. By default, the sample code will perform query on object type one by one. But since our
Category class and Parts class are related to each other, we can make use of the association to
retrieve them from database instead of query them in individual request. Let's comment on the
section of querying the parts in the sample.

3. Edit the sample code on querying the category and append the code for printing its name.

...int length = Math.min(autopartstoreCategorys.length,
ROW_COUNT);for (int i = 0; i > length; i++) {
 System.out.println("Category: ");
 System.out.println(" " + autopartstoreCategorys[i].getName());
 ...

4. Next, we retrieve the parts collection from category and then convert it to an array of Parts
objects.

...
Parts[] parts =
autopartstoreCategorys[i].parts.toArray();
...

5. Now, loop through the array to printout the information of the Parts which is associated with the
Category.

...for (int j = 0; j <
parts.length; j++) {
 System.out.println("Parts:
" + parts[j].getName()
+ ", QTY: " +
parts[j].getStockQTY());
}
...

6. Right-click on the blank area of the code editor and select Run File from the popup menu to try
out the sample.

You can see the details of the Category as well as its containing Parts listed out in the Output
window.

What this tutorial on YouTube
Working with Hibernate in NetBeans

Related Links
• Tutorial - Perform UML Modeling in NetBeans

• User's Guide - NetBeans Integration

• What is Entity Relationship Diagram (ERD)?

https://www.youtube.com/watch?v=gl0_2rx7Emc
https://www.visual-paradigm.com/tutorials/modelinginnetbeans.jsp
https://www.visual-paradigm.com/support/documents/vpuserguide/2381/2384/66569_overviewandi.html
https://www.visual-paradigm.com/guide/data-modeling/what-is-entity-relationship-diagram/

Visual Paradigm
NetBeans Tutorial: How to Access Database WITHOUT SQL?

Tutorial

https://www.visual-paradigm.com/tutorials/hibernateinnetbeans.jsp Page 5 of 5

Visual Paradigm home page
(https://www.visual-paradigm.com/)

Visual Paradigm tutorials
(https://www.visual-paradigm.com/tutorials/)

https://www.visual-paradigm.com/
https://www.visual-paradigm.com/
https://www.visual-paradigm.com/tutorials/
https://www.visual-paradigm.com/tutorials/

