

Visual Paradigm

Doc. Composer Writer’s Guide
Last update: Aug 9, 2022

© Copyright 2002-2022 Visual Paradigm International Ltd.

Visual Paradigm Doc. Composer Writer’s Guide 1

Copyright Information
This document is Copyright 2022 by Visual Paradigm International Limited.

Disclaimer
All copyrights are held by their by their respective owners, unless specifically noted otherwise. Use of a

term in this document should not be regarded as affecting the validity of any trademark or service mark.

Naming of particular products or brands should not be seen as endorsements.

Publication Date
Published 23 April 2015, based on Visual Paradigm 12.0.

Revised 9 August 2022, based on Visual Paradigm 17.0

Feedback
Please direct any comments or suggestions about this document to:

support-team@visual-paradigm.com

mailto:support-team@visual-paradigm.com

Visual Paradigm Doc. Composer Writer’s Guide 2

Table of Contents
Copyright Information ... 1

Disclaimer .. 1

Publication Date ... 1

Feedback .. 1

Table of Contents .. 2

Chapter 1. Introducing Doc. Composer ... 6

1.1 Introduction ...6

1.2 Terminologies ...6

1.3 What is Doc. Composer? ..7

1.4 Modes of Doc. Composer ...7

1.4.1 Build from Scratch ..7

1.4.2 Fill-in Doc ..7

Chapter 2. Build from Scratch.. 8

2.1 Introduction ...8

2.2 Understanding Element Template ..8

2.3 Creating a Document ..8

2.4 Overview of Doc. Composer .. 10

2.5 Developing a Document .. 11

2.5.1 Using a Template ... 11

2.5.2 Working with Content Block ... 17

2.5.3 Using Loop ... 18

2.5.4 Adding Custom Text .. 22

2.5.5 Adding Image ... 23

2.5.6 Adding Table .. 23

2.5.7 Adding Page Break .. 23

2.5.8 Using Section ... 23

2.5.9 Adding Table of Contents .. 25

2.5.10 Adding Revision Log .. 26

2.5.11 Adding Cover Page .. 27

2.5.12 Various Page Display Options ... 28

2.6 Keeping Your Document Updated ... 28

2.7 Writing Your Template ... 28

2.7.1 Go to line.. 30

2.8 Exporting a Document ... 31

2.8.1 The overview of export document window .. 32

2.8.2 The overview of Document Info ... 33

2.8.3 The overview of Options Setup.. 33

2.8.4 The overview of Page Setup.. 34

2.8.5 The overview of Cover Page ... 35

2.8.6 The overview of Watermark ... 36

Visual Paradigm Doc. Composer Writer’s Guide 3

2.8.7 The overview of Content (Only for Word document) ... 37

2.9 Managing Element Templates in Team Environment ... 37

2.9.1 Managing element templates... 37

2.9.2 Creating a template ... 39

2.9.3 Deleting a template .. 41

2.9.4 Modifying a template .. 41

2.9.5 Synchronizing element templates .. 41

2.10 Managing Styles in Team Environment ... 41

2.10.1 Managing Styles .. 42

2.10.2 Synchronizing styles configuration .. 43

Chapter 3. Fill-in Doc .. 44

3.1 Introduction .. 44

3.2 Understanding Doc Base ... 44

3.3 Understanding Doc Field ... 44

3.4 Creating a Fill-in Doc ... 45

3.5 Touching-Up a Document .. 47

3.6 Previewing a Document ... 48

3.7 Generating a Document... 48

3.8 The Doc Fields ... 48

3.8.1 ${PROJECT} .. 48

3.8.2 ${DIAGRAM} .. 49

3.8.3 ${ELEMENT} ... 50

3.8.4 ${ICON} .. 52

3.8.5 ${IMAGE} ... 52

3.8.6 ${PROPERTY} ... 53

3.8.7 ${TEXT} ... 53

3.8.8 Reusability of Doc Fields ... 54

3.9 Querying Diagrams .. 55

3.9.1 Querying Diagrams in Project .. 55

3.9.2 Querying Selected Diagrams in Project ... 56

3.9.3 Querying Specific Diagram in Project .. 56

3.9.4 Querying Sub-Diagrams from Specific Model Element ... 57

3.10 Querying Model Elements ... 57

3.10.1 Querying Model Elements in Project ... 57

3.10.2 Querying Selected Model Elements in Project .. 58

3.10.3 Querying Specific Model Element in Project ... 58

3.10.4 Querying Model Elements from Specific Model Element .. 59

3.11 Querying Diagram Elements ... 59

3.11.1 Querying Diagram Elements from Specific Diagram ... 59

3.12 Using Custom Text .. 60

3.13 Working with Table .. 60

3.14 Managing Doc Templates in Team Environment .. 62

3.14.1 Managing Doc Templates .. 62

Visual Paradigm Doc. Composer Writer’s Guide 4

3.14.2 Creating a Doc Template ... 64

3.14.3 Deleting a Doc Template ... 64

3.14.4 Editing a Doc Template ... 64

3.14.5 Synchronizing Doc Templates ... 65

Chapter 4. Writing Element Templates .. 66

4.1 What is Doc. Composer Template Language?.. 66

4.2 Template Root ... 67

4.3 Text and Property .. 67

4.3.1 Understanding Dynamic Heading Style ... 72

4.4 Looping (Non Connector) .. 73

4.4.1 <IterationBlock> ... 73

4.4.2 <ForEach> ... 74

4.4.3 <ForEachSubDiagram> ... 74

4.4.4 <ForEachDiagram> ... 76

4.4.5 <ForEachOwnerDiagram> ... 77

4.5 Looping (Connector) .. 78

4.5.1 <ForEachSimpleRelationship> .. 78

4.5.2 <ForEachRelationshipEnd> ... 79

4.6 Sorting in Loop ... 80

4.6.1 Suppress the default way of sorting .. 81

4.7 Conditional Expression .. 81

4.7.1 <DefaultValueChecker> ... 81

4.7.2 <ValueChecker> .. 82

4.7.3 <HasChildElementChecker> ... 83

4.7.4 <HasRelationshipChecker> ... 84

4.7.5 <HasDiagramChecker> ... 85

4.7.6 <HasValueChecker> .. 86

4.7.7 <HasParentModelChecker> .. 87

4.7.8 <HasSubDiagramChecker> ... 87

4.7.9 <HasOwnerDiagramsChecker> ... 88

4.7.10 Checking Multiple Conditions with <Conditions> .. 88

4.7.11 Using Nested Checkers in Propagated Checking ... 90

4.8 Working with Table .. 91

4.8.1 <TableBlock> ... 91

4.8.2 <TableRow> .. 92

4.8.3 <TableCell>.. 92

4.9 Image ... 93

4.9.1 <Image> ... 93

4.9.2 <Icon> .. 93

4.10 Break.. 93

4.10.1 <ParagraphBreak> .. 93

4.10.2 <PageBreak> ... 93

4.11 Other Constructs .. 94

Visual Paradigm Doc. Composer Writer’s Guide 5

4.11.1 <OwnerDiagram> .. 94

4.11.2 <ParentModel> .. 94

4.11.3 <ParentShape> .. 94

4.12 Reusing Template with Inline or Reference... 94

4.12.1 Inline vs Reference .. 95

4.13 Using Variable ... 95

4.13.1 How does it work? ... 96

4.13.2 Why variable? .. 98

4.13.3 Elements that supports the use of variable ... 98

Appendix A - DCTL Examples ... 99

Working with Use Case Scenario .. 99

Working with Sub-Diagrams .. 99

Working with References ... 100

Working with Stereotypes and Tagged Values .. 100

Working with Table Records of Entity .. 101

Working with Working Procedures of BPMN Task/Sub-Process .. 101

Working with Action and Action’s Type ... 102

Working with Chart Relations .. 103

Working with Model Transitor .. 104

Working with InstanceSpecification in an Object Diagram .. 106

Appendix B – Diagram Types ... 107

Visual Paradigm Doc. Composer Writer’s Guide 6

Chapter 1. Introducing Doc. Composer

1.1 Introduction

Doc. Composer is a document builder in Visual Paradigm. It provides the necessary tools development

teams need to write their own project documentation with design specification embedded.

This is a comprehensive guide that provides detailed description of how to work with Doc. Composer,

the two modes of Doc. Composer and how to write element templates for different documentation

needs. Examples are widely used in this guide and most of them are ready for practical use. They

provide a good start point for writers both in learning Doc. Composer and developing their own

documents and element templates.

1.2 Terminologies

Here is a list of terms that we will use in this document, along with their definitions:

Term Definition

Content block A block of document content produced by dragging an element template from

Element Template Pane to document.

Diagram elements A shape or connector in a diagram.

Doc. Composer A document building tool in Visual Paradigm.

Doc Template A Doc Template is the source of Doc Base. Users who work in team

environment can define Doc Template to use in document production. When

create document, Doc Base can be replicated from a Doc Template.

Doc Base A semi-completed version of your project documentation or report. It contains

only background information, possibly filled by you or your colleague. The

design details are leave empty and be filled by Doc. Composer.

Doc Field A Doc Field is a special piece of text within a Doc Base. Doc Fields will be

replaced by your actual project content when being read by Doc. Composer

during document generation.

Visual Paradigm Doc. Composer Writer’s Guide 7

1.3 What is Doc. Composer?

Documentation is important in any software project. We write software requirement specification for

describing requirements, database specification for detailing database structure, process specification

for visualizing business activities, etc. Well written documentation can ensure quality software to be

developed, and can make a good impression on customers and stakeholders. However, we understand

that time is limited and writing good documentation is not something we relish doing. Therefore, we

introduced Doc. Composer, a document builder that saves your previous time in writing documentation

by providing a smooth integration between your documentation and your software design. As long as

you need to have your design or design specification appear in your documentation, Doc. Composer

can help.

1.4 Modes of Doc. Composer

When you open Doc. Composer, you will be prompted to select either to build a document from scratch,

or to produce a document with a “Fill-in Doc”. Here is a description of the two modes of Doc.

Composer.

1.4.1 Build from Scratch

To build a document with the Build from Scratch mode is to being from a blank document, and then

make use of the tools and element templates to write and complete the document.

1.4.2 Fill-in Doc

Typically, a project documentation or report is a combination of background information like project

goal, scope and constraints, and design details like use case details, database design, process design,

etc. The Fill-in Doc mode of Doc. Composer is designed to help you “fill-in” the design details of your

documentation.

Element Template Written in XML, element template defines what and how content gets output in

a document.

Fill-in Doc A mode of Doc. Composer that helps you “fill-in” the design details of your

project documentation.

Model element Fundamental unit of project data of a Visual Paradigm project. Use case,

class, action are all examples of model element.

Visual Paradigm

Online

Cloud-based service provided by Visual Paradigm that allows you to store your

project online and to work collaboratively with your teammates by enjoying

features like commit/update, branching and tagged, PostMania ,Tasifier, etc.

VP Online Abbreviation of Visual Paradigm Online

Word document Document saved in Microsoft Word format (.docx).

Teamwork server Self-hosted collaborative modeling.

Visual Paradigm Doc. Composer Writer’s Guide 8

Chapter 2. Build from Scratch

2.1 Introduction

To build a document with the Build from Scratch mode is to begin from a blank document, and then

make use of the tools and element templates available in Doc. Composer to write and complete the

document. As an overview, “Build from Scratch” works in this way:

1. You create a document in Doc. Composer.

2. Form the content by dragging and dropping element templates from the Templates pane onto

the document.

3. Touch-up the document by adding TOC, defining headers & footers, configuring styles, etc.

4. Generate the document to a document file in HTML/PDF/MS Word format.

2.2 Understanding Element Template

An element template defines what and how content gets output in a document. For example, a Data

Dictionary template is capable in producing a data dictionary in a document, with dedicated type of

project data presented in the data dictionary (table). Each type of project data has its own set of

element templates. You have Data Dictionary template for Entity Relationship Diagram and Sub

Diagrams template for Use Case, etc.

Doc. Composer comes with a set of built-in element templates, but you can also create and edit custom

templates. For example, you can create a custom template to output a table of actors’ details, and then

a list of use cases, and then a list of sub-diagrams.

Element templates are written using an XML-based language called Doc. Composer Template

Language. If you want to create your own templates, you can learn this language by reading Chapter 4.

Writing Element Templates. In this chapter our focus is primarily on the use of built-in templates in

creating a document.

2.3 Creating a Document

To create a document:

1. Select Tools > Doc. Composer from the toolbar.

Visual Paradigm Doc. Composer Writer’s Guide 9

2. Click Build Doc from Scratch.

3. Name the document by double clicking on Document1 in the breadcrumb and then typing in a

new name.

4. Press the Enter key to confirm the naming. Your screen should look like this:

5. To have more editing space, we recommend you to collapse the toolbar temporarily by double

clicking on the Tools tab.

Notes If you don’t see the Doc. Composer button, make sure you are running the Standard

Edition (or higher) of Visual Paradigm, and have Sleek chosen as the UI style.

Visual Paradigm Doc. Composer Writer’s Guide 10

2.4 Overview of Doc. Composer

The “Build from Scratch” mode of Doc. Composer consists of three main parts:

Part Name Description

1 Diagram Navigator/

Model Explorer

The Diagram Navigator and Model Explorer (behind Diagram

Navigator) provides you with access to different parts of your project– the

project, diagram, diagram elements and model elements. If you want to

output content for say a use case diagram named “My Diagram”, select

“My Diagram” in Diagram Navigator (or Model Explorer) first.

2 Element Template

List

A list of element templates available for the project data selected in

Diagram Navigator or Model Explorer.

As said earlier, each type of project data has its own set of element

templates. Take the image above as an example, by selecting a use case

diagram in Diagram Navigator, the templates Basic, Details, Project

Management, etc. are listed. If you select other project data in Diagram

Navigator or Model Explorer, a different list of element templates will be

presented.

Document creation is the process of dragging and dropping a suitable

template from the Element Template List onto the document.

Visual Paradigm Doc. Composer Writer’s Guide 11

3 Document Content of document. What you can see here will be what you will get

when you generate the document as HTML/PDF/Word. On top of the

document there is a toolbar that provides you will access to tools like

format configuration, report configuration, page break insertion, etc. We

will talk about the tools later on in this chapter.

2.5 Developing a Document

Doc. Composer provides a flexible way for you to create project documentation. All you need to do is to

select your target model element/diagram, drag the elements template(s) from the Element Template

Pane onto the document.

2.5.1 Using a Template

To add content into a document:

1. Select project / diagram / diagram element / model element on Diagram Navigator / Model

Explorer.

Visual Paradigm Doc. Composer Writer’s Guide 12

2. Select the desired element template from the Element Template Pane and drop it/ them on the

document.

3. Repeat the previous step to build the document.

2.5.1.1 Editing image

You can add diagram images into a document with the use of element template. For diagrams

presented on a document, instead of showing the entire diagram you may want to have it focused on a

specific part of a diagram. In order to achieve this, edit the image by taking the steps below.

1. Click each image so that a bar will appear at the bottom of the image. You can edit the image

through the bar. Initially, the whole diagram is displayed to fit the placeholder.

Notes Instead of adding content element by element, you can select multiple elements at the

same time to speed up the document creation process.

Visual Paradigm Doc. Composer Writer’s Guide 13

To zoom in the particular part of diagram, drag the slider to Zoom 100% (Actual Size).

Visual Paradigm Doc. Composer Writer’s Guide 14

2. To resize the image, drag the border of placeholder.

Notes The default setting of image on document is Disable Auto Fit Placeholder. Nevertheless,

once you zoom or resize, it will turn to be Enable Auto Fit Placeholder automatically.

2.5.1.2 Working with diagram layers

The layer feature allows you to group diagram content into different logical layers. For example, you

may create an annotation layer for explanatory purpose. Such a layer contains shapes like callout and

note, but not the other shapes. Then when you want not to show the annotation shapes temporarily,

you just need to hide the layer.

Doc. Composer supports diagram layers. You can select the diagram layer to or not to process when

outputting content to a document. Let's say if you need to produce a document for a business

stakeholder, you may not want him to see the annotation shapes. What you have to do is to configure

the layer filter by excluding the annotation layer. Doc. Composer engine will read the filter and not to

process the annotation shapes.

To configure filter:

1. Right click on a content block that involves processing diagram(s) and select Configure AdHoc

Diagram Layer Filters… from the popup menu. Note that the word 'diagram' here is not

restricted to 'diagram image'. If a content block only involves listing the name of the shapes in a

Notes You can only edit the images produced by templates you dropped onto the document but

not inserted images.

Visual Paradigm Doc. Composer Writer’s Guide 15

diagram, it is still processing a diagram.

2. The diagrams being processed are listed in the Configure AdHoc Diagram Layer Filters

window. For each diagram, select which layer to include in or exclude from processing. First,

select the Filter Kind. There are four options.

@followDiagram - Follow the visibility of the layers set to the actual diagram. Layers that are

set visible will be included here, likewise hidden layers will be excluded. Simply put, what you

can see in the document will be exactly the same as the real diagram.

@all - Include all diagram layers in processing.

@include - Select the layer(s) to process.

@exclude - Select the layer(s) not to process.

Visual Paradigm Doc. Composer Writer’s Guide 16

3. If you have selected @include or @exclude, select the layer(s) to include in or exclude from

processing.

4. Click OK. The document will be refreshed immediately to reflect the filter configuration.

2.5.1.3 Understanding the default template

Each type of project data has its own set of element templates and, among these templates, one of

them is the default template.

Normally, we add content into a document by first selecting an element in Diagram Navigator or

Model Explorer, and then dragging a template from the Element Template List onto a diagram. This

works well but wouldn’t it be a bit faster if we can skip the template selection part? Default template was

designed to serve this purpose. Besides dragging a template onto a document, you can also select a

piece of project data in Diagram Navigator or Model Explorer, and then drag it directly onto the

document to add content. If you do this, we will add content based on the default template of the

selected element.

Default template is shown with its name bolded under the Element Template Pane, like the Basic

template in the following image:

By default, the Basic template is chosen to be the default template. You can, however, set a user

created template to be the default. Note that you can select either the Basic template, or any of the

Visual Paradigm Doc. Composer Writer’s Guide 17

user created templates as default. You cannot select a built-in template as the default, except the

Basic template.

2.5.2 Working with Content Block

2.5.2.1 Opening the Underlying Element

If you want to open the source element from which a content was created, right click on the content

block and select Open %NAME% from the popup menu where %NAME% is the name of the element.

Very often you need this when you spot a design flaw when reading a document, and you want to

correct it.

2.5.2.2 Opening the Specification of the Underlying Element

If you want to review or edit properties of an element from which a content was created, right click on

the content block and select Open %NAME% Specification from the popup menu where %NAME% is

the name of the element.

2.5.2.3 Repositioning a Content Block

You can always re-order content blocks in a document by performing these steps:

1. Press to select the blocks to move up or down. You can perform a multiple selection by pressing

the Shift or Ctrl key.

Visual Paradigm Doc. Composer Writer’s Guide 18

2. Click on Move Up or Move Down to re-order the selected blocks.

2.5.2.4 Deleting a Content Block

If you want to remove a content block from a document, simply select the blocks and press Delete.

2.5.3 Using Loop

Besides element template, there is another tool to query project data and place it onto a document,

called the Loop tool. You can access the Loop tool under the Element Template Pane.

The Loop tool is capable in querying children element of element selected in Diagram Navigator /

Model Explorer. When you select and drag the Loop tool onto a document, you will be prompted to

configure the Loop, like this:

Visual Paradigm Doc. Composer Writer’s Guide 19

Items listed under the Elements tab are children elements of the element selected in Diagram

Navigator / Model Explorer. For example, if you have selected a diagram, you can expect the diagram

elements being listed here.

Content will be added to document for each of the elements listed. The content to produce is

determined by an element template. You can select the template under the Element Types tab.

Visual Paradigm Doc. Composer Writer’s Guide 20

The left hand side of the Element Types tab lists the types of elements found by the loop while the

right hand side lists the element template to be chosen for content creation. By default the Basic

template is chosen for all element types. This means that for each of the elements under the Elements

tab, content will be produced and added to the document based on the Basic template. You can select

another template by click on Basic and make a selection.

2.5.3.1 Excluding Elements and Element Types

Sometimes, you may not want to produce content for all elements returned by a loop, but only some of

the elements. For example, when you create a use case specification, you may not want to process the

actors when looping under a Use Case Diagram. For such cases, you can exclude the elements or

types of element that are not needed in content creation.

You can exclude an element, or a type of element. To exclude an element, move your mouse pointer

over that element under the Elements tab and the click on the Exclude button on the right hand side of

the hovering row.

Visual Paradigm Doc. Composer Writer’s Guide 21

To exclude an element type, open the Element Types tab and move your mouse pointer over the type

to exclude, then click on the Exclude button.

If you want to remove an element or element type from the exclude list, open the Excluded tab, move

your mouse pointer over the item to be removed and then click on the Include button on the right hand

side of the hovering row.

2.5.3.2 Sorting

To re-order elements, click on the Sorting drop down menu at the top of the New Loop window and

select the way to sort.

Here are a description of the various types of sorting method:

Type Description

System Elements are sorted according to the system’s default setting.

Name Sort by elements’ name in alphabetical order.

Visual Paradigm Doc. Composer Writer’s Guide 22

2.5.3.3 Saving a Loop Template

Although Loop itself is tool instead of a template, you can produce a template from it. Doing so allows

you to customize the template further by editing the loop in XML form. To produce a loop template, right

click on any content block produced with the Loop tool and select Save as Loop Template from the

popup menu.

You will be prompted for a template name. Enter the name and confirm. When finished you will find a

new template listed in the Element Templates Pane. You can customize it and re-use it in creating

content. For details about writing a template, please read Writing Your Template.

2.5.4 Adding Custom Text

Although you cannot type in a document directly, you can add text through creating text boxes.

The text box is used for editing data on document. The significant characteristic is you can display

many different types of data by applying RTF within the text boxes.

1. Select the space where you want to insert text beforehand.

2. Click Text box button on the document's toolbar.

Model Type Sort by element type. You can customize the sort order in the Element Types

tab.

Manual Order the elements yourself.

Visual Paradigm Doc. Composer Writer’s Guide 23

3. Enter text in the text box. You can use the pop-up formatting toolbar to convert your plain text

into RTF when you want to emphasize some terms/ phrases.

2.5.5 Adding Image

Document supports inserting images. An image can be a logo or picture that is placed on the

document. Not only you can place pictures on the empty space of document but also fit them inside

table cells. In this sense, you can insert your company logo into any preferred place within the

document when you are doing a company document. The advantage is you can spare no effort in

arranging a series of images in document and then resize them. To add an image:

1. Select the content block where you want to insert an image beforehand.

2. Click Image button on the document's toolbar.

3. Select the directory of your target image and then click Open button in Choose image(s) dialog

box. As a result, the selected image is inserted.

2.5.6 Adding Table

Table is one of the popular elements in structuring data. To create a table:

1. Select the content block where you want to insert a table beforehand.

2. Click on the button on the document’s toolbar.

3. Select the number of rows and columns to be created.

4. Complete the table.

2.5.7 Adding Page Break

To end the current page and continue the document to the next page, add a page break. To add a page

break:

1. Select the content block where you want to insert a page break beforehand.

2. Click on the button on the document’s toolbar.

2.5.8 Using Section

A section is a number of continued pages that apply the same set of page properties. These properties

include page size, page orientation, page margin, visibility of header/footer, content of header/footer,

etc.

Because section allows you to define different layouts for different pages, you can make pages that

consist of wide tables show in landscape, with the other pages remain in portrait. You can also add

content-specific header and footer.

Visual Paradigm Doc. Composer Writer’s Guide 24

By inserting a section break, pages that appear after the break will apply the same set of page

properties as defined in the break. To insert a section break:

1. Select the content block where you want to insert a section break beforehand.

2. Click on the button on the document’s toolbar. A section page is inserted which moves the

chosen content to a new page.

The layout of pages within a section are controlled by the setting configured in the section break. To

configure a section break:

1. Right click on the section break.

2. Select Edit... from the popup menu. This shows the Section Properties window.

3. Edit the settings and click OK to confirm the change.

Here is a description of different parts of the Section Properties window.

Part Name Description

1 Follow previous section When checked, section properties will follow that defined in previous

section. For the first section, it follows the properties set to the whole

document.

2 Page size Determine the dimension of page.

3 Page Orientation Orientation of page, either in portrait or landscape.

4 Measurement unit Unit of margin.

5 Top margin Determine the empty space at the top of a page. You can edit the

margins size by entering the sizes into the text fields. Alternatively,

click the spinner buttons to increase/ decrease the margin sizes.

Visual Paradigm Doc. Composer Writer’s Guide 25

2.5.9 Adding Table of Contents

A table of contents is a list of key parts of a document. It is often constructed by headers or key titles in

a document, to present readers with and outline of the whole document.

Doc. Composer allows you to insert a table of contents into a document. A table of contents can be

formed not only from traditional headings styles like Heading 1 and Heading 2 but from any kind of

style, even from user-defined styles. To insert a table of contents:

1. Select the content block where you want to insert a table of contents beforehand.

2. Click on the button on the document’s toolbar and then select Table of Contents from the

drop down menu.

To change the title, maximum number of level, level detection or styles of a table of contents, to

configure it. To configure a table of contents, right click on the table of contents and select Configure

Table of Contents... from the popup menu.

Here is a description of different parts of the Configure Table of Contents window.

6 Right margin Determine the empty space on the right hand side of a page. You

can edit the margins size by entering the sizes into the text fields.

Alternatively, click the spinner buttons to increase/ decrease the

margin sizes.

7 Bottom margin Determine the empty space at the bottom of a page. You can edit

the margins size by entering the sizes into the text fields.

Alternatively, click the spinner buttons to increase/ decrease the

margin sizes.

8 Left margin Determine the empty space on the left hand side of a page. You can

edit the margins size by entering the sizes into the text fields.

Alternatively, click the spinner buttons to increase/ decrease the

margin sizes.

9 Preview of page Preview the effect of adjusting margin.

10 Header/Footer Show - Show the header/footer in document

Hide - Hide the header/footer in document

Separator - When checked, a line will be shown between

header/footer and the main content.

Continue with previous section - Following the previous section

means to have the visibility of header, footer and separator follow

that defined in the previous section. If you have added page number

to header/footer, the numbering will continue with the previous

section, too. If not to follow the previous section, the numbering will

reset to 1.

Visual Paradigm Doc. Composer Writer’s Guide 26

To update a table of contents to make it reflect the structure of the latest document content, right click

on the table of contents and select Update Table of Contents from the popup menu.

2.5.10 Adding Revision Log

When your team attempt to or has made significant changes on a document, you may want to record

the version of document, the date/time when the change took place, the person who made the change

and other necessarily remarks regarding the changes. Revision log is a piece of content you can add to

a document to record all these information. With a revision log, you fill in the revision detail as well as to

add/remove columns to suit the requirement of your team. To insert a table of contents:

1. Select the content block where you want to insert a revision log beforehand.

2. Click on the button on the document’s toolbar and then select Revision Log from the drop

down menu.

Part Description

1 The title of the table of contents. This is the text that appear above the table of contents in

document.

2 Determine the depth of the table of contents.

3 Specify the style to check for each level. If you want level 1 shows all content with Heading 1 as

style, select Level 1 on the left hand side, Heading 1 on right hand side, and click < to match

them up.

4 Specify the appearance of text in table of contents. You can apply different styles for different

rows (levels).

Visual Paradigm Doc. Composer Writer’s Guide 27

3. To enter a revision, double click on the cells and enter the values one by one.

4. If you want to insert more rows or columns, right click on the revision log and select Insert Row

or Insert Column from the popup menu.

2.5.11 Adding Cover Page

A cover page is a page that can be added at the beginning of a document. Whether or not to add such

page is up to the writer. There are two kinds of cover page you can add into a document. The first one

is to print the cover page in a program defined way. This approach requires you fill in some of the

background information like the document title, organization name and author name, etc. The second

kind of cover page is fully designed by you, the writer. It is called a free style cover page.

2.5.11.1 Built-in Cover Page

1. Click on the button on the document’s toolbar.

2. Open the Cover Page tab.

3. Configure the cover page by specifying the file path of logo image, title, organization name,

author name. You can preview the page at the right hand side of the Document Properties

window.

4. Click OK.

2.5.11.2 Free Style Cover Page

Free style cover page provides you with a page that appears at the beginning of a document for you to

design the page. You can add any text and image freely on the cover page and position them in any

position you like within the cover page. To insert a free style cover page:

1. Click on the button on the document’s toolbar and then select Cover Page from the drop

down menu.

2. When you insert a free style page the first time, you are prompted to override the generate

cover page option. By default, the built-in cover page would be chosen as cover page. When

you try to insert a free style cover page, the built-in cover page would be ignored. This option is

to ask for your confirmation for ignoring the built-in cover page. Click OK to confirm.

3. You will see an empty cover page added to the beginning of the document. Note that the page

MUST be added to the beginning of document and you cannot control its location. If you want to

add a page of custom content in the middle of the document, insert a Free Style Page instead.

4. Start editing the page by inserting text and image. To insert text or image into the page, right

click on the background of cover page and select Insert Free Style Text or Insert Free Style

Image from the popup menu.

5. Fill in the text or select the image file to insert to the page. Repeat step 3 and 4 to complete the

page.

Notes Built-in cover page is only visible in generated document, not in Doc. Composer.

Visual Paradigm Doc. Composer Writer’s Guide 28

2.5.12 Various Page Display Options

Page display is especially useful when you view the overview of document layout. Doc. Composer

supports 4 display options: single page, single page continuous, two-up and two-up continuous.

Click the Page Display Option button to select a page display option from the drop-down menu.

2.6 Keeping Your Document Updated

Since document maintains the linkage between project data and document content, you can refresh the

document upon project changes. As a result, it saves your time on repeating the steps for creating

document.

2.7 Writing Your Template

Although Doc. Composer comes with a complete set of built-in element templates, you may still want to

customize or even to write your own templates for maximizing the efficiency of document design. You

can accomplish this by writing and programming your own element templates.

To create a template:

1. Open Doc. Composer.

2. Select the type of element to create template. For example, select ANY use case diagram in

Diagram Navigator if you want to create a template to list specific shapes in use case diagram.

You can select project / diagram / model element / diagram element in Diagram Navigator and

Option Description

Single Page Display only one page at a time.

Single Page Continuous Display pages in a consecutive and vertical column.

Two-Up Display two pages side by side simultaneously.

Two-Up Continuous Display pages side by side in two consecutive vertical columns.

Visual Paradigm Doc. Composer Writer’s Guide 29

Model Explorer.

3. The Element Template Pane lists the templates available for the selected element type. If your

Template pane is hidden, select View > Panes > Property in the toolbar (or press

Ctrl+Shift+P) to show it.

4. To simplify the programming of template, you are suggested to duplicate an existing template

and start editing it, rather than do everything from scratch. Target on a template that gives the

closest outcome to what you want to show in document. If you want to start from an empty

document, select any templates. Right click on your selection and select Duplicate... from the

popup menu.

5. In the Edit Template window, specify the following information and click OK to continue.

URI: A unique URL of the template, used in plugin development

Name: The name of the element template, which is the name that shown under the Element

Template Pane.

Icon: An icon that best represent the layout of content that will be produced by using this

template.

Set as Default Template: Check this option if you want Doc. Composer to apply this template

automatically when dragging elements directly from Diagram Navigator / Model Explorer onto

Visual Paradigm Doc. Composer Writer’s Guide 30

document.

Template content: Editor for programming the template.

6. Customize your template and click OK to apply the changes. To learn how to write a template,

read Chapter 4. Writing Element Templates.

2.7.1 Go to line

If your template contains invalid content, by performing a validation (by clicking Validate), the line

number of the problem content will be displayed in the log pane. To view the problem content, you can

use the 'Go to line' function.

1. Click on the tiny arrow button next to the current line number.

Visual Paradigm Doc. Composer Writer’s Guide 31

2. Enter the line number in the Input dialog box and click OK.

2.8 Exporting a Document

After you have customized your document template on document, you can export it into document.

There are three types of document available for exporting: HTML, PDF and Word.

In document, click the Export button at the top right corner and select a type of document for exporting.

In the pop-up Export [document type] document window, specify output path and document info, and

customize page setup, cover page and watermark.

At last, click Export button.

Visual Paradigm Doc. Composer Writer’s Guide 32

2.8.1 The overview of export document window

No. Name Description

1 Output path The output path of document to be generated.

2 Launch viewer Check to open the document automatically after generation.

3 Refresh before export Before proceed exporting, refresh the document content.

4 Document info To define document information.

5 Options To determine how data is to be printed in document by setting

some of the configurable options.

6 Page Setup To customize the layout of document.

7 Cover Page To customize the first page of document.

8 Watermark To customize the watermark on document.

9 Export Confirm and export the document.

10 Cancel Close the export document dialog box without exporting.

Notes An additional Content tab is attached to Export Word document window.

Visual Paradigm Doc. Composer Writer’s Guide 33

2.8.2 The overview of Document Info

2.8.3 The overview of Options Setup

No. Name Description

1 Title The title of document. This option is only available for exporting

PDF document.

2 Author The author of the document.

3 Subject The subject of the document. This option is only available for

exporting PDF and Word document.

4 Keywords The keywords of the document.

5 Info header The info header of the document. This option is only available for

exporting PDF document.

6 Info header content The info header content of the document. This option is only

available for exporting PDF document.

7 Allow modify Select to allow modification on the document. This option is only

available for exporting PDF document.

Visual Paradigm Doc. Composer Writer’s Guide 34

2.8.4 The overview of Page Setup

No. Name Description

1 Diagram image type Select the type of image format for image that appear in the

exported document.

2 Font Control the font of document text.

3 Apply User Language By default, document content will be printed in English. By checking

this option, it will follow the language setting chosen in global

options.

4 Repeat Table Header By checking this option, table header would be repeatedly printed

when the table span multiple pages.

No. Name Description

1 Page size To select the paper size of the exported document.

2 Page Orientation This option is used to select the orientation of the document

(portrait/ landscape). This option is only available to PDF and Word

document.

3 Header Check this option to insert header to the exported document. This

option is only available to PDF and Word document.

4 Header Separator Check this option to insert header separator to the exported

document. This option is only available to PDF and Word

document.

5 Footer Separator Check this option to insert footer separator to the exported

document. This option is only available to PDF and Word

document.

6 Footer Check this option to insert footer to the exported document. This

option is only available to PDF and Word document.

Visual Paradigm Doc. Composer Writer’s Guide 35

2.8.5 The overview of Cover Page

7 Page margin To specify the page margins of the document: top, left, right and

bottom. This option is only available to PDF and Word document.

8 Measurement Unit To choose the measurement unit of page margin of the document:

inch and cm. This option is only available to PDF and Word

document.

9 Margin

(Left/Top/Right/Bottom)

Specify the width of spaces between the content and the page

border.

No. Name Description

1 Generate cover page Check this option to generate a cover page to the document.

2 Logo image path Insert an image to the cover page. You can specify the image's

directory or select the directory by clicking the ... button.

3 Logo scale Resize the inserted image by adjusting the slider.

4 Title Specify the title of your document on cover page.

5 Organization name Specify the organization name of your document on cover page.

6 Author name Specify the author name on cover page.

7 Alignment Control the position of content, whether to appear on the left, center

or right hand side of the page.

8 Cover Page Preview You can preview your cover page here.

Visual Paradigm Doc. Composer Writer’s Guide 36

2.8.6 The overview of Watermark

No. Name Description

1 Generate Watermark Check this option to generate watermark on all diagrams of

document.

2 Text Specify the text will be used for watermark.

3 Color Specify the color of text will be used for watermark by clicking the ...

button.

4 Transparency To change the background transparency for watermark, move the

Transparency slider or specify the percentage of transparency

directly.

5 Font Name Select the font name for watermark.

6 Font Style Select the font style for watermark.

7 Font Size Select the font size for watermark.

8 Sample Preview watermark here.

Visual Paradigm Doc. Composer Writer’s Guide 37

2.8.7 The overview of Content (Only for Word document)

2.9 Managing Element Templates in Team Environment

If your team is using Visual Paradigm Online or Teamwork Server as collaborative modeling solution,

you can share element templates among team members with the built-in management and

synchronization features. Doing so allows the entire team to compose document based on a common

set of element templates. Besides, this ensures the completeness of document when being viewed in

any member's environment because all members have access to the same and most updated

templates needed by the documents.

In server, element templates are stored in repository based. This means that all of your projects

managed under the same repository have access to the same set of element templates. In this page,

you will learn how to manage those element templates and share them among team members.

2.9.1 Managing element templates

Manage element templates is the process to create, edit or delete element templates stored in

repository. Once you have made the desired changes in Visual Paradigm locally, you can synchronize

the changes to server. Teammates can get the updated templates by synchronizing changes to server

as well.

As said earlier, element templates are stored in repository based. Therefore, no matter which project

you have opened, you are managing the same set of element templates.

To manage element templates:

1. In Visual Paradigm, select Tools > Doc. Composer > Manage Template XMLs… from the

toolbar. In order to access the management function, make sure you are opening a team project

managed under either Visual Paradigm Online or Teamwork Server. Besides, make sure you

are a team member and have been granted the right to Change document template in server.

No. Name Description

1 Word Template Check this option to select a Word template for Word document.

2 Path Specify the directory of word template by clicking the … button.

Visual Paradigm Doc. Composer Writer’s Guide 38

You may need to contact your server administrator to confirm the permission settings made in

server.

2. Now, you can manage element templates in the Manage Template XML window. Read the

next section for details about what you can do in the Manage Template XML window.

2.9.1.1 Overview of Manage Template XML window

No. Name Description

1 Type of project data Different templates are available for different project data. The

drop-down menu there divide project data into four main types:

Project - The entire project. You will see element templates mainly

for querying details of diagrams in project.

Diagram Type - The available types of diagram. (e.g. Use Case

Diagram, Business Process Diagram)

Model Type - The available types of model elements. (e.g Use

Case, Class)

General - Mainly for listing legacy or obsolete element templates.

Normally you don't need to deal with templates under General

section.

Visual Paradigm Doc. Composer Writer’s Guide 39

2.9.2 Creating a template

To simplify the programming of template, you are suggested to duplicate an existing template and start

editing it, rather than do everything from scratch. Target on a template that gives the closest outcome to

what you want to show in document. If you want to start from an empty document, select any

templates.

2 Show all Visual Paradigm supports a large volume of model elements, but

not all of them are well known or meaningful. By default, we hide

away those elements that aren't popular. If you need to edit their

templates you can check Show all to reveal them.

3 Filter Filter the items to be displayed in element list.

4 List of elements The elements that support template editing. If you have chosen to

list Diagram Type (in Type of project data), you will see a list of

diagram here. If you have chosen to list Model Type, you will see a

list of model elements here.

5 List of templates A list of element templates available for the element selected in the

list of elements. Each type of project data has its own set of

element templates. Take Use Case Diagram as example, you have

templates like Basic, Details, Project Management, etc. With a

different selection of element, a different list of element templates

will be presented.

6 Background information Background information of an element template. Note that you can

only edit background information of a user-defined template, but not

any built-in template. Here is a description of properties you can

set:

Name: The name of the element template, which is the name that

shown under the Element Template Pane.

Icon: An icon that best represent the layout of content that will be

produced by using this template.

Set as Default Template: Check this option if you want Doc.

Composer to apply this template automatically when dragging

elements directly from Diagram Navigator / Model Explorer onto

document.

Template content: Editor for programming the template.

7 XML Editor Customize your template in the XML editor. Again, you can only

edit a user-defined template, but not any built-in template.

8 Validate Validate the XML against the built-in XML schema.

9 Export XML Schema Export the XML schema (*.xsd) for validating the XML template

content.

10 Save Save the modifications made in XML editor.

Visual Paradigm Doc. Composer Writer’s Guide 40

1. Select the type of element to create template. For example, select Use Case Diagram if you

want to create a template to list specific shapes in use case diagram. You can select project /

diagram type / model element type.

2. Right click on an element template and select Duplicate... from the popup menu.

3. Enter the name of the new template.

4. Choose an icon that represents the presentation of content output with your template.

5. Check Set as Default Template if you want Doc. Composer to apply this template automatically

when dragging elements directly from Diagram Navigator / Model Explorer onto document.

Visual Paradigm Doc. Composer Writer’s Guide 41

6. Compose the template in XML editor. If part of your template references content written in

another element template, you can click + to add a reference to that template.

7. Click Save when finished editing. Now, you can use the new template in your document. You

can also share it with teammates.

2.9.3 Deleting a template

Right click on an element template and select Delete... from the popup menu to remove it. Note that

this action cannot be undone. Moreover, documents that used a deleted template in content will have

the missing parts be replaced by <empty> tag(s). This may severely affect the completeness of your

document so think twice before you delete a template. Make sure the template is not currently in-used

by any document, or the documents that use the templates are not important anymore.

2.9.4 Modifying a template

Click on the template in the list of template list and then modify it in XML editor. Click Save when

finished editing. When finished, you can refresh your document to apply the changes.

2.9.5 Synchronizing element templates

Once you have finished editing element templates, you can synchronize the changes to server.

Teammates can get the updated templates by synchronizing changes to server as well.

To synchronize changes to server manually, select Tools > Doc. Composer > Sync. to VP

Online/Teamwork Server from the toolbar.

Note that your changes will be synchronized automatically when you perform commit.

2.10 Managing Styles in Team Environment

If your team is using Visual Paradigm Online or Teamwork Server as collaborative modeling solution,

you can share styles configuration among team members with the built-in management and

synchronization features. Doing so allows the entire team to compose document based on a common

set of styles configuration. Besides, this ensures that documents are always up-to-date when being

viewed in any member's environment because all members have access to the most updated styles

configuration.

Notes You can only delete a user-defined template.

Visual Paradigm Doc. Composer Writer’s Guide 42

In server, styles configuration are stored in repository based. This means that all of your projects

managed under the same repository have access to the same set of styles configuration. In this page,

you will learn how to manage those styles and share them among team members.

2.10.1 Managing Styles

Manage styles is the process to create, edit or delete styles configuration stored in repository. Once

you have made the desired changes in Visual Paradigm locally, you can synchronize the changes to

server. Teammates can get the updated styles configuration by synchronizing changes to server as

well.

As said earlier, styles configuration are stored in repository based. Therefore, no matter which project

you have opened, you are managing the same set of styles.

To manage styles:

1. In Visual Paradigm, select Tools > Doc. Composer > Manage Styles... from the toolbar. In

order to access the management function, make sure you are opening a team project managed

under either Visual Paradigm Online or Teamwork Server. Besides, make sure you are a team

member and have been granted the right to Change document template in server. You may

need to contact your server administrator to confirm the permission settings made in server.

2. Now, you can manage styles in the Manage Styles window.

Visual Paradigm Doc. Composer Writer’s Guide 43

2.10.2 Synchronizing styles configuration

Once you have finished editing styles configuration, you can synchronize the changes to server.

Teammates can get the updated configuration by synchronizing changes to server as well.

To synchronize changes to server manually, select Tools > Doc. Composer > Sync. to VP

Online/Teamwork Server from the toolbar.

Note that your changes will be synchronized automatically when you perform commit.

Visual Paradigm Doc. Composer Writer’s Guide 44

Chapter 3. Fill-in Doc

3.1 Introduction

Typically, a project documentation or report is a combination of background information like project

goal, scope and constraints, and design details like use case details, database design, process design,

etc. The Fill-in Doc mode of Doc. Composer is designed to help you “fill-in” the design details of your

documentation. As an overview, Fill-in Doc works in this way:

1. You write your project documentation in Microsoft Word.

2. Place some special fields to the parts that requires the insertion of design details.

3. Load the document into Doc. Composer

4. Generate a document. Doc. Composer analyze the special fields in your document and replace

them with actual project content.

3.2 Understanding Doc Base

A Doc Base is a semi-completed version of your project documentation or report. It contains only

background information, possibly filled by you or your colleague. The design details are leave empty

and be filled by Doc. Composer. As its name suggested, Doc Base provides a base for documentation

production. You provide such a base to Doc. Composer and then Doc. Composer fill the empty parts for

you by embedded model data extracted from your Visual Paradigm project into your documentation.

3.3 Understanding Doc Field

A Doc Field is a special piece of text within a Doc Base. Doc Fields will be replaced by your actual

project content when being read by Doc. Composer during document generation. Here is an example of

Doc Field:

A Doc Field is written in this format: ${list_of_parameters}. We will talk about the parameters in detail in

coming sections.

Simply speaking, if you create a Word document, type the above text into the document, save the

document as a Word file, import the file into Doc. Composer as a Doc Base and then generate a

document from Doc. Composer, the generated document will look like this:

${DIAGRAM, “List of use case diagrams”, “UseCaseDiagram”, LoopInProject, PROPERTY=name}

Visual Paradigm Doc. Composer Writer’s Guide 45

Here we assume that your project contains three use case diagrams, namely Use Case Diagram1,

Use Case Diagram2, Use Case Diagram3.

This is how Doc Field basically works – You type the field text into your document at the places where

you need to embed your project content, save the document, import it into Doc. Composer and let it

produce a new document by replacing those fields with project content.

There are six kinds of fields. The following gives you the basic ideas of each fields, along with their

required formats and capabilities. The detailed usage of these fields will be covered in next big

sections.

3.4 Creating a Fill-in Doc

1. Select Tools > Doc. Composer from the toolbar.

2. Click Fill-in Doc. This shows the Specify Doc Base window.

3. Specify the Doc Base to use in document production. Doc base is a Word document file that

contains both manually written content (e.g. Introduction, project scope, etc) and Doc Fields. If

you are unclear about Doc Base and Doc Field, read the previous sections. There are two

approaches from which Doc Base can be created from. One is to create from an external

document file. If you take this approach, click Choose from Local Drive and then select the

document file (*.docx). Another approach is to duplicate from an existing Doc Template. If you

take this approach, select the Doc Template from the template list and click OK. You will then

be prompted to save a copy of the Doc Template to your computer as Doc Base. Visual

Paradigm provides three default templates for you to choose from. If your team uses Teamwork

Server or Visual Paradigm Online, you can create your own set of templates and share them

Use Case Diagram1, Use Case Diagram2, Use Case Diagram3

Visual Paradigm Doc. Composer Writer’s Guide 46

among the team.

4. If necessary, rename the document by double clicking on its name in breadcrumb and then

typing in a new name.

5. Press the Enter key to confirm the naming.

6. Doc. Composer analyzes your Doc Base and presents the Doc Fields that exist in your

document. Your screen should look like this:

To have more editing space, we recommend you to collapse the toolbar temporarily by double clicking

on the Tools tab.

Visual Paradigm Doc. Composer Writer’s Guide 47

3.5 Touching-Up a Document

If your Doc Base contains any of the following kinds of Doc Fields, you have to touch-up the document

in order to generate a document file from Doc. Composer

 Doc Field with Any as source

 Doc Field with One as source

 Doc Field with LoopInElement as source

 Doc Field with LoopInDiagram as source

 ${TEXT} field

To “touch-up” a document means to select diagram(s) or model element(s), or to enter the content

required by Doc Fields in a document. For example, if in a Doc Base there exist a ${TEXT} like this:

You’ll have to provide the project name in Doc. Composer. Here is what you will see in Doc. Composer:

In the example above, we have entered My Project as the project name.

Another example would be the use of ${ELEMENT} field, with One as source:

This example means to output the name of a use case to the document and such a use case shall be

specified in Doc. Composer. Here is how the Doc. Composer will look like when applying a Doc Base

that contains such an ${ELEMENT} field.

What you need to do is to click on the Element link. Note that the title of this link varies depending on

the type of field and source specified.

Then, select the desired element(s) and click OK to confirm.

<${TEXT, “Project Name”}>

${ELEMENT, “Name of Use Case”, “UseCase”, One, PROPERTY=name}

Visual Paradigm Doc. Composer Writer’s Guide 48

3.6 Previewing a Document

If you want to take a quick look at the document file that will be generated with the applied Doc Base,

click Preview at the bottom right corner of the document preview. A temporary document file will be

opened for you to preview the outcome.

3.7 Generating a Document

When you are ready for producing the final document, click Generate at the bottom right corner of the

document preview. Enter the filename of the document and confirm. A complete document file will then

be generated.

3.8 The Doc Fields

3.8.1 ${PROJECT}

The ${PROJECT} field is used to output a project property’s value or based on a template written for

the project.

Here is an example of ${PROJECT}:

Here is the sample output:

This is the syntax of a ${PROJECT} field:

${PROJECT, PROPERTY=name}

MyProject

${PROJECT,

 template_name | PROPERTY=property_name

}

Visual Paradigm Doc. Composer Writer’s Guide 49

This is a description of the various parts of a ${PROJECT} field:

 PRJOECT is to indicate that this is a ${PROJECT} field.

 template_name | PROPERTY=property_name – The type of content to be extracted from

the project and printed on the document.

o template_name – Output content from the project based on the template

template_name written for the project. For example, if you have a template

AllClassDiagrams written for the project, by specifying AllClassDiagrams as

template_name, Doc. Composer will output content by following AllClassDiagrams.

o PROPERTY=property_name – Output a specific property (e.g. name) for the project.

If you want to output multiple properties, try write a template and make reference to it by

providing its name here.

3.8.2 ${DIAGRAM}

The ${DIAGRAM} field is used to query diagram(s) from a project (or a specific place in a project), and

to output content from the diagrams querying.

Here is an example of ${DIAGRAM}:

Here is the sample output:

This is the syntax of a ${DIAGRAM} field:

This is a description of the various parts of a ${DIAGRAM} field:

 DIAGRAM is to indicate that this is a ${DIAGRAM} field.

 field_name is a short description of the field (e.g. “List of Use Case Diagrams”). In Doc.

Composer, you can see the fields placed in an imported Doc Base. The fields are represented

by the field_name typed here. field_name must be unique within a Doc Base. If there are

two or more fields having the same field name, content may be produced wrongly.

 diagram_type indicates the type(s) of diagram that you want to query (e.g.

“UseCaseDiagram”). If you want to query all types of diagram in a project, skip this parameter. If

you want to query multiple types of diagram, enter their types respectively, separated by comma

(e.g. “ClassDiagram,UseCaseDiagram”). Click here for the proper diagram types to use.

${DIAGRAM, “List of Use Case Diagrams”, “UseCaseDiagram”, LoopInProject, PROPERTY=name}

Use Case Diagram1, Use Case Diagram2, Use Case Diagram3

${DIAGRAM,

 field_name,

 [“diagram_type{, diagram_type...}”,]

 [SortBy=“property{, property...}”,]

 One | Any | LoopInProject | LoopInElement,

 template_name | PROPERTY=property_name | ICON | IMAGE

}

Visual Paradigm Doc. Composer Writer’s Guide 50

 SortBy is an optional part that supports the sorting of diagrams retrieved, based on the property

or properties specified. If you want diagrams not to be sorted, use SortBy=NoSort.

 One | Any | LoopInProject | LoopInElement indicates the source from which to

query diagrams.

o One – Query a specific diagram in project. This option is often used when your

document, or part of the document is written around a specific diagram. If you choose

One here, you will have to select in Doc. Composer the diagram to query.

o Any – Query a number of diagrams in project. If you choose Any here, you will have to

select in Doc. Composer the diagram to query.

o LoopInProject – Query all the diagrams in project.

o LoopInElement – Query the sub-diagram(s) of a specific model element. If you choose

LoopInElement here, you will have to select in Doc. Composer the model element

from which to query sub-diagrams.

 template_name | PROPERTY=property_name | ICON | IMAGE – The type of content

to be extracted from the querying diagrams and printed on the document.

o template_name – Output content from each of the querying diagrams, based on the

template template_name written for the type of the querying diagram. For example, if

you have a template AllUseCases written for Use Case Diagram, by specifying

AllUseCases as template_name, Doc. Composer will output content for each of the

Use Case Diagrams by following AllUseCases.

o PROPERTY=property_name – Output a specific property (e.g. description) for each

of the querying diagrams. If you want to output multiple properties, try write a template

and make reference to it by providing its name here.

o ICON – Output the icon for each of the querying diagrams.

o IMAGE – Output the diagram image for each of the querying diagrams.

3.8.3 ${ELEMENT}

The ${ELEMENT} field is used to query model element(s) or diagram element(s) from a project (or a

specific place in a project), and to output content from the elements querying.

Here is an example of ${ELEMENT}:

Here is the sample output:

This is the syntax of a ${ELEMENT} field:

${ELEMENT, “List of Use Cases”, UseCase, LoopInProject, PROPERTY=name}

Use Case1, Use Case2

${ELEMENT,

 field_name,

 [“element_type{,element_type...}”,]

 [SortBy=“property{, property...}”,]

 One | Any | LoopInProject | LoopInElement | LoopInDiagram,

Visual Paradigm Doc. Composer Writer’s Guide 51

This is a description of the various parts of a ${ELEMENT} field:

 ELEMENT is to indicate that this is a ${ELEMENT} field.

 field_name is a short description of the field (e.g. “List of Use Cases”). In Doc. Composer, you

can see the fields placed in an imported Doc Base. The fields are represented by the

field_name typed here. field_name must be unique within a Doc Base. If there are two or

more fields having the same field name, content may be produced wrongly.

 element_type indicates the type(s) of model/diagram element that you want to query (e.g.

“UseCase”). If you want to query all types of model element in a project, skip this parameter. If

you want to query multiple types of model element, enter their types respectively, separated by

comma (e.g. “Actor,UseCase”).

 SortBy is an optional part that supports the sorting of elements retrieved, based on the property

or properties specified. If you want elements not to be sorted, use SortBy=NoSort.

 One | Any | LoopInProject | LoopInElement | LoopInDiagram indicates the

source from which to query elements.

o One – Query a specific model element in project. This option is often used when your

document, or part of the document is written around a specific model element. If you

choose One here, you will have to select in Doc. Composer the model element to query.

o Any – Query a number of model elements in project. If you choose Any here, you will

have to select in Doc. Composer the model element to query.

o LoopInProject – Query all the model elements in project.

o LoopInElement – Query the child elements of a specific model element. If you choose

LoopInElement here, you will have to select in Doc. Composer the model element

from which to query child elements.

o LoopInDiagram – Query the diagram elements from a specific diagram. If you choose

LoopInDiagram here, you will have to select in Doc. Composer the diagram from

which to query diagram elements.

 template_name | PROPERTY=property_name | ICON | IMAGE – The type of content

to be extracted from the querying elements and printed on the document.

o template_name – Output content from each of the querying elements, based on the

template template_name written for the type of the querying element. For example, if

you have a template UseCaseInfo written for Use Case, by specifying UseCaseInfo as

template_name, Doc. Composer will output content for each of the Use Cases by

following UseCaseInfo.

o PROPERTY=property_name – Output a specific property (e.g. description) for each

of the querying elements. If you want to output multiple properties, try write a template

and make reference to it by providing its name here.

o ICON – Output the icon for each of the querying elements.

 template_name | PROPERTY=property_name | ICON

}

Visual Paradigm Doc. Composer Writer’s Guide 52

3.8.4 ${ICON}

When you are working with a table, you can place the ${ICON} field in a table cell to let Doc. Composer

replace it with the icon image of the querying diagram or element.

Note that ${ICON} can only be used in a table cell.

Here is an example of ${ICON}:

Here is the sample output:

This is the syntax of a ${ICON} field:

3.8.5 ${IMAGE}

When you are working with a table, you can place the ${IMAGE} field in a table cell to let Doc.

Composer replace it with the diagram image of the querying diagram.

Note that ${IMAGE} can only be used in a table cell.

Here is an example of ${IMAGE}:

Here is the sample output:

This is the syntax of an ${IMAGE} field:

${ICON}

${ICON}

${IMAGE}

Visual Paradigm Doc. Composer Writer’s Guide 53

3.8.6 ${PROPERTY}

When you are working with a table, you can place the ${PROPERTY} field in a table cell to let Doc.

Composer replace it with the property value of the querying diagram or element.

Note that ${PROPERTY} can only be used in a table cell.

Here is an example of ${PROPERTY}:

Here is the sample output:

This is the syntax of a ${ICON} field:

3.8.7 ${TEXT}

The ${TEXT} field is used when you need to include information that should be or can only be provided

when generating document. A typical usage of ${TEXT} is to request for project name.

In Doc. Composer, ${TEXT} are represented as text fields. User can enter the value required by the

${TEXT} field. When generating document, those ${TEXT} will be replaced by the text entered.

Here is an example of ${TEXT}:

Here is the sample output:

This is the syntax of a ${TEXT} field:

This is a description of the various parts of a ${TEXT} field:

 TEXT is to indicate that this is a ${TEXT} field.

 field_name is a short description of the field (e.g. “Project name”). It can also be used as a

reminder to provide certain kind of information (e.g. “Please enter the project name.”).

${IMAGE}

${PROPERTY}

This is the description of use case.

${PROPERTY}

${TEXT, “Project name”}

Online Banking

${TEXT,

 field_name

}

Visual Paradigm Doc. Composer Writer’s Guide 54

field_name must be unique within a Doc Base. If there are two or more fields having the

same field name, content may be produced wrongly.

3.8.8 Reusability of Doc Fields

A Doc Base may contains many Doc Fields. If the Doc Fields use LoopInElement and LoopInDiagram,

which require the selection of source in Doc. Composer, you (or the person who will generate

document with the Doc Base) will then need to select model elements and diagrams again and again in

Doc. Composer. This is not just time consuming but also error prone.

In order to solve this problem, you can reuse Doc Fields throughout a document. When you need to

query data from a source that was expected by an earlier Doc Field, write the new Doc Field by using

the same name as the previous one, like this:

${ELEMENT, “Tasks in Main BPD”, “BPTask”, LoopInDiagram, PROPERTY=name}

…

${ELEMENT, “Tasks in Main BPD", “BPSubProcess”, LoopInDiagram, Basic}

…

${ELEMENT, “Tasks in Main BPD”, “BPTask”, LoopInDiagram, Details}

This three Doc Fields mean that I want to display the name of all tasks from a specific diagram (to be

chosen in Doc. Composer). Then, I want to display the basic information of sub-processes on the same

diagram. Finally, I want to display the details of tasks from again the same diagram.

By reusing Doc Fields, you just need to make the selection of source once. Subsequent Doc Fields will

just apply the same selection. The key is to use same names for different Doc Fields.

Visual Paradigm Doc. Composer Writer’s Guide 55

Note that the same source must be supplied in order for the reusability to work. By “source”, we are

referring to the argument of a Doc Field that indicates the source from which to query

elements/diagrams, such as One | Any | LoopInProject | LoopInElement | LoopInDiagram.

3.9 Querying Diagrams

If you want to retrieve a diagram or diagrams, and to output content like the diagram’s image, name or

a list of containing diagram elements, etc., read this section to learn the ways to retrieve diagrams.

3.9.1 Querying Diagrams in Project

If you want to output the image or any detail of all the diagrams in project, write a ${DIAGRAM} field

in your Word document with LoopInProject specified as diagram source. Here are several examples of

such a ${DIAGRAM} field:

In the first example, the name of all Use Case Diagrams in the project will be output. Note that “Name

of ALL Use Case Diagrams” is the field name, which is a required and unique value for identifying this

field.

In the second example, the description of all the diagrams in the project will be output.

${DIAGRAM, “Name of ALL Use Case Diagrams”, “UseCaseDiagram”, LoopInProject,

PROPERTY=name}

${DIAGRAM, “Description of ALL diagrams”, LoopInProject, PROPERTY=description}

${DIAGRAM, “Details of ALL Use Case Diagram and class diagram”,

“UseCaseDiagram,ClassDiagram”, LoopInProject, MyTemplate}

Visual Paradigm Doc. Composer Writer’s Guide 56

In the third example, content will be output for each of the Use Case Diagrams and Class Diagrams in

the project, based on the template MyTemplate.

3.9.2 Querying Selected Diagrams in Project

The diagrams in your project may be created for different contexts or about different problem domains.

When you write a documentation, you may want to focus on a specific context at a time, which requires

the insertion of design specification for that specific context. In that case, you will want to query a

selected set of diagrams in your project, instead of querying all diagrams.

If you want to output the image or any detail of selected diagrams in project, write a ${DIAGRAM}

field in your Word document with Any specified as diagram source. Here are several examples of such

a ${DIAGRAM} field:

In the first example, the name of selected Use Case Diagrams in the project will be output. Note that

“Use Case Diagrams (Admin)” is the field name, which is a required and unique value for identifying this

field.

In the second example, the image of selected diagrams in the project will be output.

In the third example, content will be output for each of the selected diagrams in the project, based on

the template MyTemplate.

When you pick-up a Doc Base with such a ${DIAGRAM} field in it, you can select the diagrams to

query in Doc. Composer.

3.9.3 Querying Specific Diagram in Project

Let’s say you have created multiple Use Case Diagrams for multiple sub-systems. When you write a

documentation for a specific sub-system, you may want to insert the design specification related to that

specific sub-system. In that case, you will want to query a specific Use Case Diagram in your project.

If you want to output the image or any detail of a specific diagram in project, write a ${DIAGRAM}

field in your Word document with One specified as diagram source. Here are several examples of such

a ${DIAGRAM} field:

In the first example, the description of selected Use Case Diagram in the project will be output. Note

that “ATM Overview” is the field name, which is a required and unique value for identifying this field.

In the second example, the image of selected diagram in the project will be output.

${DIAGRAM, “Use Case Diagrams (Admin)”, “UseCaseDiagram”, Any, PROPERTY=name}

${DIAGRAM, “Diagram Images”, Any, IMAGE}

${DIAGRAM, “Diagram Images”, Any, MyTemplate}

${DIAGRAM, “ATM Overview”, “UseCaseDiagram”, One, PROPERTY=description}

${DIAGRAM, “Online Photo Album”, One, IMAGE}

${DIAGRAM, “CS System – Use Cases”, One, Children}

Visual Paradigm Doc. Composer Writer’s Guide 57

In the third example, content will be output for the selected diagram in the project, based on the

template Children.

When you pick-up a Doc Base with such a ${DIAGRAM} field in it, you can select the diagram to query

in Doc. Composer.

3.9.4 Querying Sub-Diagrams from Specific Model Element

Let’s say you have created several use cases and, for each use case, there are multiple sub-Business

Process Diagrams that describe the business workflow in which the use case might happen. When you

write a use case report, you may want to present the details of the Business Process Diagrams of a

chosen use case. In that case, you will want to query the sub-diagrams of a selected use case.

If you want to output the image or any detail of sub-diagrams from a specific model element, write a

${DIAGRAM} field in your Word document with LoopInElement specified as diagram source. Here are

several examples of such a ${DIAGRAM} field:

In the first example, the name of sub-Business Process Diagrams of the selected model element will be

output. Note that “Related Business Workflow” is the field name, which is a required and unique value

for identifying this field.

In the second example, the image of sub-diagrams of a selected model element will be output.

In the third example, content will be output for each of the sub-diagrams of a selected model element,

based on the template MySubDiagrams.

When you pick-up a Doc Base with such a ${DIAGRAM} field in it, you can select the model element to

query in Doc. Composer.

3.10 Querying Model Elements

If you want to retrieve a model element or elements, and to output content like the element’s name,

description, or a list of member elements (e.g. attributes of class, columns of entity), etc., read this

section to learn the ways to retrieve model elements.

3.10.1 Querying Model Elements in Project

If you want to output any detail of all the model elements in project, write an ${ELEMENT} field in

your Word document with LoopInProject specified as element source. Here are several examples of

such an ${ELEMENT} field:

${DIAGRAM, “Related Business Workflow”, “BusinessProcessDIagram”, LoopInElement,

PROPERTY=name}

${DIAGRAM, “Images of Sub-Diagrams”, LoopInElement, IMAGE}

${DIAGRAM, “Sub Diagram Details”, LoopInElement, MySubDiagrams}

${ELEMENT, “Name of ALL Use Cases”, “UseCase”, LoopInProject, PROPERTY=name}

${ELEMENT, “Description of ALL model elements”, LoopInProject, PROPERTY=description}

Visual Paradigm Doc. Composer Writer’s Guide 58

In the first example, the name of all use cases in the project will be output. Note that “Name of ALL Use

Cases” is the field name, which is a required and unique value for identifying this field.

In the second example, the description of all the model elements in the project will be output.

In the third example, content will be output for each of the use cases, BPMN tasks and sub-processes

in the project, based on the template MyTemplate.

3.10.2 Querying Selected Model Elements in Project

The model elements in your project may be created for different contexts or purposes. When you write

a documentation, you may want to focus on some of them at a time. In that case, you will want to query

a selected set of model elements in your project, instead of querying all elements.

If you want to output any detail of selected model elements in project, write an ${ELEMENT} field in

your Word document with Any specified as element source. Here are several examples of such an

${ELEMENT} field:

In the first example, the name of selected use cases will be output. Note that “Use Cases” is the field

name, which is a required and unique value for identifying this field.

In the second example, content will be output for each of the selected model elements, based on the

template MyTemplate.

When you pick-up a Doc Base with such an ${ELEMENT} field in it, you can select the model elements

to query in Doc. Composer.

3.10.3 Querying Specific Model Element in Project

If you need to write a document for a specific model element, like a use case report, you may need to

insert the details of a specific use case into your document. In that case, you will want to query a

specific model element in your project, instead of querying all model elements.

If you want to output any detail of a specific model element in project, write an ${ELEMENT} field in

your Word document with One specified as element source. Here are several examples of such an

${ELEMENT} field:

In the first example, the description of selected use case will be output. Note that “Desc of Use Case” is

the field name, which is a required and unique value for identifying this field.

${ELEMENT, “Details of ALL Use Cases and Business Processes”,

“UseCase,BPTask,BPSubProcess”, LoopInProject, MyTemplate}

${ELEMENT, “Use Cases”, “UseCase”, Any, PROPERTY=name}

${ELEMENT, “Elements’ Detail”, Any, MyTemplate}

${ELEMENT, “Desc of Use Case”, “UseCase”, One, PROPERTY=description}

${ELEMENT, “List of Class Members”, “Class”, One, Children}

Visual Paradigm Doc. Composer Writer’s Guide 59

In the second example, content will be output for the selected class, based on the template Children.

When you pick-up a Doc Base with such a ${DIAGRAM} field in it, you can select the model element to

query in Doc. Composer.

3.10.4 Querying Model Elements from Specific Model Element

If you need to write a document for a specific model element by detailing its children elements, like a

business responsibility report that details the tasks contained by specific pool, or a use case report that

details the use cases contained by a system, you will want to query the children elements of a selected

model element.

If you want to output any detail of model elements from a specific model element, write an

${ELEMENT} field in your Word document with LoopInElement specified as element source. Here are

several examples of such an ${ELEMENT} field:

In the first example, the name of the children use cases of selected element will be output. Note that

“List of System Use Cases” is the field name, which is a required and unique value for identifying this

field.

In the second example, the name of all children elements of selected element will be output.

When you pick-up a Doc Base with such an ${ELEMENT} field in it, you can select the model element

to query in Doc. Composer.

3.11 Querying Diagram Elements

If you want to retrieve a shape or shapes, and to output content like the shape’s name, description, or a

list of member elements (e.g. attributes of class, columns of entity), etc., read this section to learn the

ways to retrieve shapes (i.e. diagram elements).

3.11.1 Querying Diagram Elements from Specific Diagram

If you need to write a document for a specific diagram, like an ERD report, you may need to insert the

details of the containing shapes into your document. In that case, you will want to query diagram

elements in a diagram.

If you want to output any detail of a diagram elements in a diagram, write an ${ELEMENT} field in

your Word document with LoopInDiagram specified as element source. Here are several examples of

such an ${ELEMENT} field:

In the first example, the name of entities on a selected ERD will be output. Note that “Tables in ERD” is

the field name, which is a required and unique value for identifying this field.

${ELEMENT, “List of System Use Cases”, “UseCase”, LoopInElement, PROPERTY=name}

${ELEMENT, “List of Elements (Any type)”, LoopInElement, PROPERTY=name}

${ELEMENT, “Tables in ERD”, “DBTable”, LoopInDiagarm, PROPERTY=name}

${ELEMENT, “List of Classes”, “Class”, LoopInDiagram, Details}

Visual Paradigm Doc. Composer Writer’s Guide 60

In the second example, content will be output for classes in the selected diagram, based on the

template Children.

When you pick-up a Doc Base with such an ${ELEMENT} field in it, you can select the diagram to

query in Doc. Composer.

3.12 Using Custom Text

If you want to request the user of Doc Base to fill-in certain piece of content himself/herself, write a

${TEXT} field. A ${TEXT} field is a placeholder of content that can only be provided when generating a

document, such as project name or author name. Here is an example of a ${TEXT} field:

3.13 Working with Table

You can present project data neatly with the use of table. In this section we will introduce the various

kinds of table you can create in a Doc Base, and explain how to create such tables by writing Doc

Fields. We assume that you have the basic knowledge of Doc Field. If you don’t, please read the

previous sections.

Let’s begin by studying the following example, which consists of a table in a Doc Base, with an

${ELEMENT} Doc Field placed in the second row of the table.

Suppose the Doc Base is applied on a project that contains the design specification of an ATM. Here is

the sample outcome:

Based on the outcome, you can see:

 The row that contains the Doc Field replicate itself to list out all the elements queried.

 In each row, the name of use case is output, which is the result of using PROPERTY=name in

the Doc Field.

While this example output the name of use case, you can output complex content with the use of an

element template. You just need to replace PROPERTY=name with the name of that template.

The example above is perhaps a bit simple. Let’s extend it to make it a bit more complicated and closer

to practical usage. Let’s study this table:

${TEXT, “Project Name”}

Use Cases in Project

${ELEMENT, “List of Use Cases”, UseCase, LoopInProject, PROPERTY=name}

Use Cases in Project

Withdraw Cash

Transfer Cash

Donate Money

Pay Bills

Use Cases in Project ID Description

${ELEMENT, “List of Use Cases”,

UseCase, LoopInProject,

PROPERTY=name}

${PROPERTY,

“userID”}

${PROPERTY, “description”}

(to be confirmed)

Visual Paradigm Doc. Composer Writer’s Guide 61

We have added two more columns into the table, one for displaying the ID of use cases and another for

displaying the description of use cases. Again, if we apply the Doc Base on an ATM project, here is the

sample outcome:

Based on the outcome, you can see:

 In order to output multiple properties of an element, add extra columns into the table and use

${PROPERTY} to output those properties.

 You can format table content, like the green text you see above.

 You can add your own text into table cells.

You may also want to present the icons of querying element. The following example gives you some

ideas how to achieve it.

Here is the sample output when applying the above Doc Base on an ATM project, with a class diagram

chosen to be the source of elements to query.

You may also output diagram images using ${IMAGE}. Here is an example:

Here is the sample output when applying the above Doc Base on an ATM project.

Use Cases in Project ID Description

Withdraw Cash UC01 Get cash from the ATM.

(to be confirmed)

Transfer Cash UC02 Transfer cash from one account to another.

(to be confirmed)

Donate Money UC03 Donate money to a chosen charity.

(to be confirmed)

Pay Bills UC04 Settle bills.

(to be confirmed)

Model Elements in a Class Diagram Or if you want a column of icons

${ELEMENT, “List of Model Elements”, ,

LoopInDiagram, ICON} ${PROPERTY, “name”}

${ICON}

Model Elements in a Class Diagram Or if you want a column of icons

 Account

 atm

 Transaction

 User

All Diagrams in Project Diagram Image

${DIAGRAM, “All

Diagrams”, ,

LoopInProject,

PROPERTY=name}

${IMAGE}

All Diagrams in Project Diagram Image

Visual Paradigm Doc. Composer Writer’s Guide 62

3.14 Managing Doc Templates in Team Environment

If your team is using Visual Paradigm Online or Teamwork Server as collaborative modeling solution,

you can share Doc Templates among team members with the built-in management and synchronization

features. Doing so allows the entire team to compose document based on a common set of Doc

Templates. Besides, this ensures that documents are always up-to-date when being viewed in any

member's environment because all members have access to the most updated templates.

In server, Doc Templates are stored in repository based. This means that all of your projects managed

under the same repository have access to the same set of Doc Templates. In this page, you will learn

how to manage those Doc Templates and share them among team members.

3.14.1 Managing Doc Templates

Manage Doc Templates is the process to create, edit or delete Doc Templates stored in repository.

Once you have made the desired changes in Visual Paradigm locally, you can synchronize the

changes to server. Teammates can get the updated templates by synchronizing changes to server as

well.

As said earlier, Doc Templates are stored in repository based. Therefore, no matter which project you

have opened, you are managing the same set of Doc Templates.

To manage Doc Templates:

ATM Use Case Model

Domain Class Model

Notes ${PROPERTY}, ${ICON} and ${IMAGE} can only be used inside a table cell.

Visual Paradigm Doc. Composer Writer’s Guide 63

1. In Visual Paradigm, select Tools > Doc. Composer > Manage Doc Templates... from the

toolbar. In order to access the management function, make sure you are opening a team project

managed under either Visual Paradigm Online or Teamwork Server. Besides, make sure you

are a team member and have been granted the right to Change document template in server.

You may need to contact your server administrator to confirm the permission settings made in

server.

2. Now, you can manage Doc Templates in the Manage Doc Templates window. Read the next

section for details about what you can do in the Manage Doc Templates window.

3.14.1.1 Overview of Manage Doc Template window

No. Name Description

1 List of Doc Templates List of Doc Template available for use as Doc Base in document

generation.

2 New Create a Doc Template.

3 Delete Delete the Doc Template.

4 Import Import a Word document (.docx) file for this Doc Template. Note

that the second time you import a .docx file into a Doc Template will

have the original one be replaced by the importing one.

5 Name Name of Doc Template.

6 Description Description of Doc Template.

7 Create and modified date The date of creation and modification of this Doc Template.

8 Export Export the current or any earlier revisions of Doc Templates

as .docx file.

Visual Paradigm Doc. Composer Writer’s Guide 64

3.14.2 Creating a Doc Template

When you create a document under the Fill-in Doc mode of Doc. Composer, you will be asked to

choose a Doc Base for document generation. There are two approaches of choosing Doc Base. One is

to create from an external document file. Another one is to duplicate from an existing Doc Template. In

this section, you will learn how to create a Doc Template. By creating a Doc Template, you can re-use it

again and again in creating different documents.

By default, Visual Paradigm provides three default Doc Templates. You can also create your own set of

Doc Templates in the Manage Doc Templates window by taking the steps below:

1. In the Manage Doc Templates window, click New at bottom left corner.

2. Choose your .docx file in the file chooser. The file you provide here should contain both

manually written content (e.g. Introduction, project scope, etc) and Doc Fields.

3. Enter a meaningful name for the Doc Template.

4. You may enter the description of template as well.

5. Click OK to confirm the changes. Now, you can use the new template when you create a

document with Fill-in Doc. You can also share it with teammates.

3.14.3 Deleting a Doc Template

In the Manage Doc Templates window, select the Doc Template to delete from the template list and

click Delete... at bottom left corner to remove it permanently. Note that the deletion will NOT affect any

of the document that used the deleted template. The only effect of deletion is that no one will be able to

create documents with the Doc Template deleted.

3.14.4 Editing a Doc Template

If you have modified your project documentation, say, for updating its content or layout, you will need to

replace the document file previously imported to a Doc Template with the new version of document.

You can do this by editing the Doc Template.

9 OK Confirm the changes made and return to Doc. Composer.

10 Cancel Discard the changes and return to Doc. Composer.

Visual Paradigm Doc. Composer Writer’s Guide 65

In the Manage Doc Templates window, select the Doc Template to edit, and then modify its details on

the right hand side. You can rename it, update its description or replace it with another document file by

clicking Import.... Note that by importing a document file, the original one will be overwritten. However,

you can always retrieve a previously imported file by clicking Export.... Click OK when finished editing.

When finished, you can use the modified template when you create a document with Fill-in Doc. You

can also share it with teammates.

3.14.5 Synchronizing Doc Templates

Once you have finished editing Doc Templates, you can synchronize the changes to server.

Teammates can get the updated templates by synchronizing changes to server as well.

To synchronize changes to server manually, select Tools > Doc. Composer > Sync. to VP

Online/Teamwork Server from the toolbar.

Note that your changes will be synchronized automatically when you perform commit.

Visual Paradigm Doc. Composer Writer’s Guide 66

Chapter 4. Writing Element Templates

4.1 What is Doc. Composer Template Language?

DCTL (Doc. Composer Template Language) is an XML-based language that enables the

transformation of design specification into document content. DCTL comes with a well-defined structure

and syntactic rules for writers to define what and how project data should be extracted from a Visual

Paradigm project, and how these data should be presented in a document.

The following shows a basic template:

As the template shows, it tries to create a table, and add table rows for showing the names of use

cases within a diagram. This example is a fairly simple one yet it outlines two main thing that every

element template tries to achieve:

- Data retrieval - To query the use cases from a diagram, and then get the name of each use

case.

- Layout of content – Table construction.

<DiagramBaseInitiationBlock>

 <TableBlock tableStyle="Summaries">

 <TableRow>

 <TableCell>

 <Text>Name</Text>

 </TableCell

 </TableRow>

 <IterationBlock modelType="UseCase">

 <TableRow>

 <TableCell>

 <Property property="name"/>

 </TableCell>

 </TableRow>

 </IterationBlock>

 </TableBlock>

</DiagramBaseInitiationBlock>

Visual Paradigm Doc. Composer Writer’s Guide 67

That’s what you can do with a DCTL – You compose an element template with DCTL, drag the

template into your document in Doc. Composer, let Doc. Composer interpret your template and output

content accordingly.

In the coming sections you will see how to retrieve project data as well as to layout the content with the

use of DCTL.

4.2 Template Root

Every element template mush has <ElementBaseInitiationBlock>, <DiagramBaseInitiationBlock> or

<ProjectBaseInitiationBlock> as root element.

The use of <ElementBaseInitiationBlock> is to tell the template engine that the template will be applied

to a model element. If you are writing a template for a model element (e.g. use case, package...), use

<ElementBaseInitiationBlock> as template root.

The use of <DiagramBaseInitiationBlock> is to tell the template engine that the template will be applied

to a diagram. If you are writing a template for a diagram (e.g. Class Diagram...), use

<DiagramBaseInitiationBlock> as template root.

The use of <ProjectBaseInitiationBlock> is to tell the template engine that the template will be applied

to a project. If you are writing a template for a project, use <ProjectBaseInitiationBlock> as template

root.

If you check back the example used in the previous section, you will find that the template was written

to query the use cases from a diagram. The template will be applied on a diagram so

<DiagramBaseInitiationBlock> was used as root element.

The following examples show the use of <ElementBaseInitiationBlock> and

<ProjectBaseInitiationBlock> in templates.

4.3 Text and Property

When you want to output some text, you either use a <Text> or a <Property>.

<ElementBaseInitiationBlock>

 <!—Output the name of selected class-->

 <Property property="name"/>

</ElementBaseInitiationBlock>

<ProjectBaseInitiationBlock>

 <!—Output the name of all use cases in the project-->

 <IterationBlock allLevel="true" modelType="UseCase">

 <Property property="name"/>

 </IterationBlock>

</ProjectBaseInitiationBlock>

Visual Paradigm Doc. Composer Writer’s Guide 68

You use <Text> when you want to output specific words, sentences or paragraphs, such as “Here is a

list of business activities:”. The following example shows the use of <Text> in a template.

The first <Text> in the example above outputs a sentence “Here is a list of elements in my project: “.

The second <Text> outputs a colon between the name and type of elements. Note that the space

before and after the colon will get output into the document.

Here is the outcome of the example above.

The following table lists the available attributes of <Text>.

<Text>Here is a list of elements in my project:</Text>

<ParagraphBreak/>

<IterationBlock allLevel="true" >

 <Property property="name"/>

 <Text> : </Text>

 <Property property="modelType"/>

 <ParagraphBreak/>

</IterationBlock>

Here is a list of elements in my project:

Place Order : UseCase

PaymentController : Class

Cancel Order : BPTask

Name Description Required?

isBold : boolean Set the text to bold. Optional

isItalic : boolean Set the text italic. Optional

isUnderline : boolean Underline text. Optional

fontFamily : string Specify the name of font to apply to the text. Optional

fontSize : integer Set the font size. Optional

foreColor : color Set the color of text. Optional

alignment : string

{left | center | right}

Set the alignment of text. Optional

style : string Set the name of style. You can add and edit style in Doc.

Composer.

Optional

numberingLevel : short Determine the Numbering Level if the text is showing as a

number or bullet list.

Optional

margin Determine the left margin of text. Optional

margin-top : integer The top margin of a text. Note that only the first set of

margin will be considered within a paragraph. The rest will

Optional

Visual Paradigm Doc. Composer Writer’s Guide 69

You may have noticed the use of <Property> in the example above. <Property> is another way to

output text. You use <Property> when you want to output text by extracting the data from a property of

querying diagram or element. The following example shows the use of <Property> in a template.

be ignored. In Doc. Composer, a paragraph is ended by a

<ParagraphBreak/>.

margin-right : integer The right margin of a text. Note that only the first set of

margin will be considered within a paragraph. The rest will

be ignored. In Doc. Composer, a paragraph is ended by a

<ParagraphBreak/>.

Optional

margin-bottom : integer The bottom margin of a text. Note that only the first set of

margin will be considered within a paragraph. The rest will

be ignored. In Doc. Composer, a paragraph is ended by a

<ParagraphBreak/>.

Optional

margin-left : integer The left margin of a text. Note that only the first set of

margin will be considered within a paragraph. The rest will

be ignored. In Doc. Composer, a paragraph is ended by a

<ParagraphBreak/>.

Optional

hyperlink : boolean Specify whether the text is a hyperlink or not. If true, the

text will be linkable.

Optional

keepWithNext : boolean Make sure the text will be shown in same page with next

item. (Used for WORD document only)

Optional

href : string The text will be linkable and the target will be the URL

specified by this attribute. When this attribute is specified,

@hyperlink will be ignored.

Example: <Text href="https://www.visual-

paradigm.com">Visual Paradigm</Text>

Optional

isWordFieldCode :

boolean

When true, the text will be exported as a Word field code

instead of plain text content.

Example <Text

isWordFieldCode="true">FILENAME</Text>

Optional

<IterationBlock allLevel="true" >

 <Text>Name: </Text>

 <Property property="name"/>

 <ParagraphBreak/>

 <Property property="description"/>

 <ParagraphBreak/>

 <ParagraphBreak/>

</IterationBlock>

Visual Paradigm Doc. Composer Writer’s Guide 70

The first <Property> outputs the name of the querying element, while the second <Property> outputs

the description.

Here is the outcome of the example above.

The following table lists the available attributes of <Property>.

Name: Place Order

The process to check out a shopping cart and finish the payment.

Name: PaymentController

A controller class that handles the payment logic.

Name: Cancel Order

The process to delete an order made within the last 7 days.

Name Description Required?

property : string The property to query.

e.g.: name (to output the name of a model element)

Use property=”fullName” to output the fully qualified

name of querying element. For example:

com.vp.MyClass instead of MyClass for the name of a

class inside the package com.vp.

Use property=”typeWithFullyQualify” to output the fully

qualified type of querying element. For example: output

com.vp.MyClass for the type of an attribute.

Use property “returnTypeWithFullQuality” to output the

fully qualified return type of querying element. For output

com.vp.MyClass for the return type of

Required

isIgnoreHTMLFontSize :

boolean

Ignore the font size on the HTML text. Optional

isIgnoreHTMLFontFamily :

boolean

Ignore the font selection of the HTML text Optional

forcePlainText : boolean Force HTML text to show as plain text by removing

formatting, if any.

Optional

defaultValue : string The text to show when the value of property has not

ever been specified.

Optional

isBold : boolean Set the text to bold. Optional

isItalic : boolean Set the text italic. Optional

Visual Paradigm Doc. Composer Writer’s Guide 71

isUnderline : boolean Underline text. Optional

fontFamily : string Specify the name of font to apply to the text. Optional

fontSize : integer Set the font size. Optional

foreColor : color Set the color of text. Optional

alignment : string

{left | center | right}

Set the alignment of text. Optional

style : string Set the name of style. You can add and edit style in

Doc. Composer.

Optional

numberingLevel : short Determine the Numbering Level if the text is showing as

a number or bullet list.

Optional

margin The top, right, bottom, left margin of a text. Note that

only the first set of margin will be considered within a

paragraph. The rest will be ignored. In Doc. Composer,

a paragraph is ended by a <ParagraphBreak/>.

Example: margin="0, 0, 0, 0"

Optional

margin-top : integer The top margin of a text. Note that only the first set of

margin will be considered within a paragraph. The rest

will be ignored. In Doc. Composer, a paragraph is ended

by a <ParagraphBreak/>.

Optional

margin-right : integer The right margin of a text. Note that only the first set of

margin will be considered within a paragraph. The rest

will be ignored. In Doc. Composer, a paragraph is ended

by a <ParagraphBreak/>.

Optional

margin-bottom : integer The bottom margin of a text. Note that only the first set

of margin will be considered within a paragraph. The

rest will be ignored. In Doc. Composer, a paragraph is

ended by a <ParagraphBreak/>.

Optional

margin-left : integer The left margin of a text. Note that only the first set of

margin will be considered within a paragraph. The rest

will be ignored. In Doc. Composer, a paragraph is ended

by a <ParagraphBreak/>.

Optional

hyperlink : boolean Specify whether the text is a hyperlink or not. If true, the

text will be linkable.

Optional

keepWithNext : boolean Make sure the text will be shown in same page with next

item. (Used for WORD document only)

Optional

Visual Paradigm Doc. Composer Writer’s Guide 72

4.3.1 Understanding Dynamic Heading Style

When you want to set a text produced by a <Text> or a <Property> to be a heading, add and specify

the style attribute in the <Text> or <Property>.

There are two ways of specifying a heading – Static and Dynamic. The following example shows the

static way of specifying heading:

The <Text> in the example above outputs a sentence “Text in heading 1”, with Heading 1 as style. The

<Property> outputs the name of a model element, with Heading 2 as style.

The static way of specifying heading requires you to provide the style name in the template.

In contrast to the static way, here is an example that shows the dynamic way of specifying heading:

In the example above, we do not provide the name of the heading style. Instead, we use @heading to

indicate the need to assign heading style, @heading+ to indicate an increase of heading style level. By

using @heading, the style Heading 1…N will be used in the output document.

Here is the outcome of the example above.

The sentence Text in heading 1 has Heading 1 applied, while the name Place Order Use Case has

Heading 2 applied.

dateFormatString : string Date value property will be formatted with the format

pattern specified before displaying. Formatting will only

occur when the property is a date value (e.g.

pmLastModified).

e.g. @dateFormatString ="yyyy-MM-dd"

Optional

anchorMark : boolean Acts like the target of an anchor in HTML. By including

anchorMark="true" to the Property element through

which the name of a diagram or model element is

generated, the other occurrences of that diagram /

model element within the document will be clickable in

the generated Word document, which helps bring the

reader to the anchor position upon clicking.

Optional

<Text style="Heading 1">Text in heading 1</Text>

<Property property="name" style="Heading 2"/>

<Text style="@heading+">Text in heading 1</Text>

<Property property="name" style="@heading+"/>

Text in heading 1
Place Order Use Case

Visual Paradigm Doc. Composer Writer’s Guide 73

4.3.1.1 More about Heading Increment

By appending + to @heading, the leveling of heading style will be increased. For example, if the

previous heading is a Heading 1, the use of @heading+ will output a heading in Heading 2.

The use of + in @heading is optional though. If you want to add a heading that has the same heading

level as the previous heading, skip + to reuse the style used by the previous heading.

4.4 Looping (Non Connector)

When you want to retrieve the children elements from a querying model element / diagram, write a loop

element.

4.4.1 <IterationBlock>

Retrieve elements from project / model element / diagram. By iterating over project and model element,

a list of model element will be returned. By iterating over diagram, a list of diagram element will be

returned. The following example shows the use of <IterationBlock> in a template.

Here is the outcome of the example above.

The following table lists the available attributes of <IterationBlock>.

<IterationBlock modelType="class">

 <Property property="name"/>

 <ParagraphBreak/>

</IterationBlock>

User

Account

AccountManager

Transaction

AccountController

Name Description Required?

modelType : string Filter the children by specified model element

type (e.g. package).

Optional

modelTypes : string Filter the children by a number of model element

types. (e.g. actor, usecase)

Optional

stereotypes : string Filter the children by a number of stereotypes. Optional

name : string Filter the children by their name. Optional

filterHidden : boolean Filter hidden children diagram element. This is

for retrieving from diagram/diagram element only.

Optional

includeConnectors : boolean Determines whether to retrieve shape or

shape+connectors from diagram. This is for

retrieving from diagram only.

Optional

Visual Paradigm Doc. Composer Writer’s Guide 74

4.4.2 <ForEach>

Retrieve model elements from a model element’s property. The following example shows the use of

<ForEach> in a template.

Here is the outcome of the example above.

The following table lists the available attributes of <ForEach>.

4.4.3 <ForEachSubDiagram>

Retrieve sub-diagram(s) from a model element. For example, retrieve sub-sequence-diagrams from a

controller class. Note that you can only use <ForEachSubDiagram> to retrieve sub-diagram(s) of model

element. If you want to retrieve diagrams from project, use <ForEachDiagram> instead.

allLevel : boolean Determines whether to retrieve all model

elements from project. When false, only the root

level elements will be retrieved. This attribute is

only useful when retrieving elements from

project.

Optional

ignoreLastSeparator : boolean Ignore the break for the last element of current

for-each loop.

Optional

breakString : string Insert a string between model elements of

current for-each.

identifier : string Optional

suppressDuplicatedModelElement :

boolean = true

When the same model element is being included

twice in an iteration, having

suppressDuplicatedModelElement set to true

means to ignore those repeated occurrences.

Optional

<ForEach property = "stereotypes">

 <Property property="name"/>

 <ParagraphBreak/>

</ForEach>

Control

ORM Persistable

Name Description Required?

property : string The property from which model elements can be retrieved. Required

ignoreLastSeparator :

boolean

Ignore the break for the last element of current for-each loop. Optional

breakString : string Insert a string between model elements of current for-each. Optional

Visual Paradigm Doc. Composer Writer’s Guide 75

The following table lists the available attributes of <ForEachSubDiagram>.

Name Description Required?

diagramType : string The type of diagram to retrieve. Optional

ignoreLastSeparator :

boolean

Ignore the break for the last element of current for-each loop. Optional

layerFilters : string Select the diagram layer to or not to process when outputting

content to a document. Let's say if you need to produce a

document for a business stakeholder, you may not want him to

see the annotation shapes. What you have to do is to configure

the layer filter by excluding the annotation layer (assuming that

such a layer exists). Doc. Composer engine will read the filter

and not to process the annotation shapes.

Possible values:

@followDiagram - Follow the visibility of the layers set to the

actual diagram. Layers that are set visible will be included

here, likewise hidden layers will be excluded. Simply put, what

you can see in the document will be exactly the same as the

real diagram.

@all - Include all diagram layers in processing.

name - The name of the only layer to include in processing.

name1, name2, name3... - The names of the layers to include

in processing. ", " is used as a delimiter.

${...} - '...' is the variable name. Use a variable to specify the

name/names of layers to include in processing. User can

specify the value of the variable in Doc. Composer.

@exclude:name - The name of the only layer not to process.

@exclude:name1, name2, name3... - The names of the

layers not to process.

@exclude:${...} - '...' is the variable name. Use a variable to

specify the name/names of layers not to include in processing.

User can specify the value of the variable in Doc. Composer.

By not specifying layerFilters, 'AdHoc' filter will be used, which

means that the end user will be responsible for configuring the

Optional

Visual Paradigm Doc. Composer Writer’s Guide 76

4.4.4 <ForEachDiagram>

Retrieve diagram(s) from project. Like other for-each elements, you can specify the type of diagram to

retrieve. For example, retrieve all class diagrams from project. Note that you can only use

<ForEachDiagram> to retrieve diagram from project. If you want to retrieve sub-diagrams from model

element, use <ForEachSubDiagram> instead.

The following table lists the available attributes of <ForEachDiagram>.

filter in Doc. Composer. If not specified, it will behave as

@followDiagram.

Name Description Required?

diagramType : string The type of diagram to retrieve. Optional

property : string The property from which diagrams can be retrieved. Optional

ignoreLastSeparator :

boolean

Ignore the break for the last element of current for-each loop. Optional

layerFilters : string Select the diagram layer to or not to process when outputting

content to a document. Let's say if you need to produce a

document for a business stakeholder, you may not want him to

see the annotation shapes. What you have to do is to configure

the layer filter by excluding the annotation layer (assuming that

such a layer exists). Doc. Composer engine will read the filter

and not to process the annotation shapes.

Possible values:

@followDiagram - Follow the visibility of the layers set to the

actual diagram. Layers that are set visible will be included

here, likewise hidden layers will be excluded. Simply put, what

you can see in the document will be exactly the same as the

actual diagram.

@all - Include all diagram layers in processing.

name - The name of the only layer to include in processing.

name1, name2, name3... - The names of the layers to include

in processing. ", " is used as a delimiter.

${...} - '...' is the variable name. Use a variable to specify the

name/names of layers to include in processing. User can

specify the value of the variable in Doc. Composer.

@exclude:name - The name of the only layer not to process.

Optional

Visual Paradigm Doc. Composer Writer’s Guide 77

4.4.5 <ForEachOwnerDiagram>

Retrieve the diagram(s) that owns a specific model element. For example, class diagram "Domain

Diagram" and "Security" both contain class "Login" (same model element), by applying

<ForEachOwnerDiagram> on the "Login" class, diagram "Domain Diagram" and "Security" will be

returned.

The following table lists the available attributes of <ForEachOwnerDiagram>.

@exclude:name1, name2, name3... - The names of the

layers not to process.

@exclude:${...} - '...' is the variable name. Use a variable to

specify the name/names of layers not to include in processing.

User can specify the value of the variable in Doc. Composer.

By not specifying layerFilters, 'AdHoc' filter will be used, which

means that the end user will be responsible for configuring the

filter in Doc. Composer. If not specified, it will behave as

@followDiagram.

Name Description Required?

diagramType : string The type of diagram to retrieve. Optional

ignoreLastSeparator :

boolean

Ignore the break for the last element of current for-each loop. Optional

layerFilters : string Select the diagram layer to or not to process. Let's say if you

need to produce a document for a business stakeholder, you

may not want him to see the annotation shapes. What you

have to do is to configure the layer filter by excluding the

annotation layer (assuming that such a layer exists). Doc.

Composer engine will read the filter and not to process the

annotation shapes.

Possible values:

@followDiagram - Follow the visibility of the layers set to the

real diagram. Layers that are set visible will be included here,

likewise hidden layers will be excluded. Simply put, what you

can see in the document will be exactly the same as the real

diagram.

@all - Include all diagram layers in processing.

name - The name of the only layer to include in processing.

Optional

Visual Paradigm Doc. Composer Writer’s Guide 78

4.5 Looping (Connector)

4.5.1 <ForEachSimpleRelationship>

Retrieve SimpleRelationship elements from model element or connector from diagram element.

The following table lists the available attributes of <ForEachSimpleRelationship>.

name1, name2, name3... - The names of the layers to include

in processing. ", " is used as a delimiter.

${...} - '...' is the variable name. Use a variable to specify the

name/names of layers to include in processing. User can

specify the value of the variable in Doc. Composer.

@exclude:name - The name of the only layer not to process.

@exclude:name1, name2, name3... - The names of the

layers not to process.

@exclude:${...} - '...' is the variable name. Use a variable to

specify the name/names of layers not to include in processing.

User can specify the value of the variable in Doc. Composer.

By not specifying layerFilters, 'AdHoc' filter will be used, which

means that the end user will be responsible for configuring the

filter in Doc. Composer. If not specified, it will behave as

@followDiagram.

Name Description Required?

modelType : string Filter relationship by specified model element type (e.g.

Generalization). Note that not all kind of relationship belongs to

simple relationship. Here are the possible types of simple

relationship:

Abstraction, ActivityObjectFlow, AnalysisComposition,

AnalysisDiagramTransitor, AnalysisParentChild,

AnalysisReference, AnalysisRelationship,

AnalysisSubDiagram, AnalysisTransitor, AnalysisUsed,

AnalysisView, Anchor, ArchiMateAccess,

ArchiMateAggregation, ArchiMateAssignment,

ArchiMateAssociation, ArchiMateCommunicationPath,

ArchiMateFlow, ArchiMateNetwork, ArchiMateProvide,

ArchiMateRealization, ArchiMateRequire,

ArchiMateSpecialization, ArchiMateTriggering,

Optional

Visual Paradigm Doc. Composer Writer’s Guide 79

4.5.2 <ForEachRelationshipEnd>

Retrieve the from or to end of an association.

The following table lists the available attributes of <ForEachRelationshipEnd>.

ArchiMateUsedBy, AssociationClass, BPAssociation,

BPDataAssociation, BPMessageFlow, BPSequenceFlow,

BindingDependency, BusinessRuleAssociation, Constraint,

ControlFlow, ConversationLink, DBForeignKey, DFDataFlow,

Dependency, Deployment, EPCControlFlow,

EPCInformationFlow, EPCOrganizationUnitAssignment,

ExceptionHandler, Extend, Generalization, GenericConnector,

GlossaryFactTypeAssociation, Include,

InteractionDiagramDurationConstraint, Link, MindConnector,

MindLink, OCLine, ObjectFlow, PMProcessLink, Permission,

RQRefine, RQTrace, Realization, RequirementDerive, Satisfy,

Transition, Transition2, Usage, Verify

modelTypes : string Filter relationships by modelTypes. If @modelType is defined,

@modelTypes will be ignored.

Optional

direction

{all | from | to}

Filter relationship by direction. Optional

ignoreLastSeparator :

boolean

Ignore the break for the last element of current for-each loop. Optional

breakString : string Insert a string between model elements of current for-each. Optional

Name Description Required?

modelType : string Filter relationship end by specific model element type. Optional

modelTypes : string Filter relationship ends by modelTypes. If @modelType is

defined, @modelTypes will be ignored.

Optional

endPointer

{all | from | to | both |

self | other}

Filter relationship ends based on the way they are attached to

the querying element. For example, if 'from' is specified, only

relationships that take the querying element as the source (i.e.

from end) will be chosen.

Optional

ignoreLastSeparator :

boolean

Ignore the break for the last element of current for-each loop. Optional

breakString : string Insert a string between model elements of current for-each. Optional

Visual Paradigm Doc. Composer Writer’s Guide 80

4.6 Sorting in Loop

Add <Sortings> under a loop element (e.g. <IterationBlock>, <ForEach>) to sort retrieved elements.

<Sortings> contains one or more <Sorting>. Each <Sorting> defines a way to sort the elements

retrieved. The following example shows the use of <Sorting> in a template.

Here is the outcome of the example above.

The following table lists the available attributes of <Sorting>.

<IterationBlock modelType="Class">

 <Sortings>

 <Sorting by="property" property="name"/>

 </Sortings>

 <Property property="name"/>

 <ParagraphBreak/>

</IterationBlock>

Account

AccountController

AccountManager

Transaction

User

Name Description Required?

by : string

{name | type |

modelType |

diagramType |

property | followTree |

level |

businessProcessFlow}

Sort by any of the following options:

- name : sort by name

- type : sort by type (type of model element or diagram)

- modelType : sort by model element's type

- diagramType : sort by diagram type

- property: sort by property, requires the definition of

@property, @sortValues, @defaultPropertyValue

- followTree: follows the order of elements in active tree –

either Model Navigator or Diagram Navigator

- level: sort by parent-child

- businessProcessFlow: sort the BPD elements by the ordering

in BPD (calculated by their ordering in sequence/message

flow).

 ONLY AVIALABLE for sorting Diagram Elements in a BPD

Required

property : string If @by="property", you have to specify @property to name the

property to be sorted.

You can also sort elements by their tagged values by

specifying this:

${taggedValues.children(TAG_NAME).value}

Replace TAG_NAME with the name of the tag to be sorted

Optional

Visual Paradigm Doc. Composer Writer’s Guide 81

4.6.1 Suppress the default way of sorting

Without using <Sortings> and <Sorting>, elements in loop will still be sorted alphabetically. If you want

to suppress the default way of sorting, write <Sortings noSort="true"/>. Here is an example:

4.7 Conditional Expression

4.7.1 <DefaultValueChecker>

The <DefaultValueChecker> element evaluates the querying element to check if the property stated by

the @property attribute equals to its default value. If the result of evaluation matches with the result

stated by the attribute @flag, the child elements of <DefaultValueChecker> will be processed.

Otherwise, the child elements will be skipped.

The following example shows the use of <DefaultValueChecker> in a template.

sortValues : string If @by="property", you can specify @sortValues to define the

ordering of values to be sorted.

e.g.

 @by="property" @property="visibility" @sortValues="public,

protected, private"

 means 'public' model elements will list before 'protected'

model elements, 'protected' will list before 'private'

Optional

defaultPropertyValue :

string

If @by="property", @defaultPropertyValue can be specified for

the default value of the model elements that don't have this

property value.

Optional

descending : Boolean true to sort elements in descending order, false to sort

elements in ascending order.

Optional

dateFormatString :

string

Date value property will be formatted with the format pattern

specified before sorting. Formatting will only occur when the

property is a date value (e.g. pmLastModified).

e.g. @dateFormatString ="yyyy-MM-dd"

Optional

<IterationBlock modelType="Class">

 <Sortings noSort="true"/>

 <Property property="name"/>

 <ParagraphBreak/>

</IterationBlock>

<IterationBlock modelType="Class">

 <DefaultValueChecker property="root" flag="false">

 <Text>The root property has been modified.</Text>

Visual Paradigm Doc. Composer Writer’s Guide 82

The following table lists the available attributes of <DefaultValueChecker>.

4.7.2 <ValueChecker>

The <ValueChecker> element evaluates the querying element to check if the value of the property

stated by the @property attribute equals to the value stated by the @value attribute. If the result of

evaluation is true, the child elements of <ValueChecker> will be processed. Otherwise, the child

elements will be skipped.

The following example shows the use of <ValueChecker> in a template.

The following table lists the available attributes of <ValueChecker>.

 </DefaultValueChecker>

</IterationBlock>

Name Description Required?

property : string The property to check.

Note: If you want to evaluate if a model is from a referenced

project, use fromReferenceProject (i.e.

property="fromReferenceProject" value="true")

Optional

flag : boolean The expected result of checking. If the actual result matches

the value specified by @flag, the child elements will be

processed.

Optional

<IterationBlock modelType="Class">

 <ValueChecker property="name" value="ShapeCreator">

 <Text>ShapeCreator class found!</Text>

 </ValueChecker>

 <ValueChecker property="description" operator="not equals" value="">

 <Text>Description: </Text>

 <Property property="description"/>

 </ValueChecker>

</IterationBlock>

Name Description Required?

property : string The property to check. Optional

operator : string

{equals | not equals |

less than | equals or

less than | greater

than | equals or

greater than | like | not

like | equal | not

equal}

Specify the way to compare the property value of model

against your expectation.

equals - The value of property must be the same as the

expected value

not equals - The value of property must be different from the

expected value

Optional

Visual Paradigm Doc. Composer Writer’s Guide 83

4.7.3 <HasChildElementChecker>

The <HasChildElementChecker> element evaluates the querying element to check if it contains any

child element, or type(s) of child elements specified by the @modelType or @modelTypes attributes. If

the result of evaluation is true, the child elements of <HasChildElementChecker> will be processed.

Otherwise, the child elements will be skipped.

The following example shows the use of <HasChildElementChecker> in a template.

less than - The value of property must be smaller than the

expected value.

equals or less than - The value of property must be the same

or smaller than the expected value.

greater than - The value of property must be larger than the

expected value.

equals or greater than - The value of property must be the

same or larger than the expected value.

like – The value of property must contain the expected value

not like - The value of property must not contain the expected

value

value : string The value expected for the property. If @regularExpression is

set to true, you can make use of '?' and '*' in the value field for

representing wildcard characters. For example, use "*UI" as

@value to find out all model elements with names end with

"UI".

Optional

length : int Optional

caseSensitive :

Boolean

Determine whether the checking of string property need to take

care of the use of upper and lower case.

Optional

regularExpression :

boolean

When true, you can make use of '?' and '*' in the value field for

representing wildcard characters. For example, use "*UI" as

@value to find out all model elements with names end with

"UI".

Optional

id : string Optional

dateFormatString :

string

Date value property will be formatted with the format pattern

specified before checking. Formatting will only occur when the

property is a date value (e.g. pmLastModified).

e.g. @dateFormatString ="yyyy-MM-dd"

Optional

<IterationBlock modelType="Class">

 <HasChildElementChecker modelType="Attribute" flag="true">

 <IterationBlock modelType="Attribute">

Visual Paradigm Doc. Composer Writer’s Guide 84

The following table lists the available attributes of <HasChildElementChecker>.

4.7.4 <HasRelationshipChecker>

The <HasRelationshipChecker> element evaluates the querying element to check if it contains any

relationship, or type(s) of relationships specified by the @modelType or @modelTypes attributes. If the

result of evaluation is true, the child elements of <HasRelationshipChecker> will be processed.

Otherwise, the child elements will be skipped.

The following example shows the use of <HasRelationshipChecker> in a template.

 <Property property="name"/>

 <ParagraphBreak>

 </IterationBlock>

 </HasChildElementChecker>

 <HasChildElementChecker modelType="Attribute,Operation" flag="true">

 <IterationBlock modelTypes="Attribute,Operation">

 <Property property="name"/>

 <ParagraphBreak>

 </IterationBlock>

 </HasChildElementChecker>

</IterationBlock>

Name Description Required?

flag : boolean The expected result of checking. If the actual result matches

the value specified by @flag, the child elements will be

processed.

Optional

modelType : string The type of model element you want the parent to contain or

not contain.

Optional

modelTypes : string The types of model element you want the parent to contain

or not contain.

Optional

stereotypes : string Filter the children by a number of stereotypes. Optional

includeConnectors :

boolean

Determine whether to retrieve shape or shape+connectors

from diagram. This is for retrieving from diagram only.

filterHidden : Boolean

allLevel : Boolean Determine whether to retrieve all model elements from

project. When false, only the root level elements will be

retrieved. This attribute is only useful when retrieving

elements from project.

valueConditionCheckId :

string

<IterationBlock modelType="Class">

 <HasRelationshipChecker modelType="Association" flag="true">

Visual Paradigm Doc. Composer Writer’s Guide 85

The following table lists the available attributes of <HasRelationshipChecker>.

4.7.5 <HasDiagramChecker>

The <HasDiagramChecker> element evaluates the querying “thing” (project or model element) to check

if it has specified any diagram for a given property specified by the @property attribute. If the result of

evaluation is true, the child elements of <HasDiagramChecker> will be processed. Otherwise, the child

elements will be skipped.

The following example shows the use of <HasDiagramChecker> in a template.

 <ForEachRelationshipEnd modelType="AssociationEnd" endPointer="self">

 <RelationshipEndEndRelationship>

 <FromEnd>

 <ModelElementProperty property="EndModelElement">

 <Property property="name"/>

 <Text>, </Text>

 </ModelElementProperty>

 </FromEnd>

 <ToEnd>

 <ModelElementProperty property="EndModelElement">

 <Property property="name"/>

 <Text>, </Text>

 </ModelElementProperty>

 </ToEnd>

 </ForEachRelationshipEnd>

 </HasRelationshipChecker>

 <HasRelationshipChecker modelType="Generalization" direction="to">

 <ForEachSimpleRelationship type="Generalization">

 <ModelElementProperty property="from">

 <Property property="name"/>

 <Text>, </Text>

 </ModelElementProperty>

 </ForEachSimpleRelationship>

 </HasRelationshipChecker>

</IterationBlock>

Name Description Required?

flag : boolean Check whether you want any relationship to exist or not. Optional

modelType : string The type of relationship you want the querying model element

to contain.

Optional

modelTypes : string The types of relationship you want the querying model element

to contain. If @modelType is specified, @modelTypes will be

ignored.

Optional

direction

{all | from | to}

Check if the querying model element belongs to a specific end

of a relationship.

Optional

Visual Paradigm Doc. Composer Writer’s Guide 86

The following table lists the available attributes of <HasDiagramChecker>.

4.7.6 <HasValueChecker>

The <HasValueChecker> element evaluates the querying “thing” (project or model element) to check if

it has specified a given property, specified by the @property attribute. If the result of evaluation is true,

the child elements of <HasValueChecker> will be processed. Otherwise, the child elements will be

skipped.

The following example shows the use of <HasValueChecker> in a template.

The following table lists the available attributes of <HasValueChecker>.

<ProjectBaseInitiationBlock>

 <HasDiagramChecker diagramType="ClassDiagram" flag="true">

 <Text>This project contains at least one class diagram.</Text>

 </HasDiagramChecker>

</ProjectBaseInitiationBlock>

Name Description Required?

flag : boolean The expected result of checking. If the actual result matches

the value specified by @flag, the child elements will be

processed.

Optional

property : string The property from which diagrams can be retrieved. Optional

diagramType : string The type of diagram you want the project to contain or not

contain.

Optional

<IterationBlock modelType="Class">

 <HasValueChecker property="taggedValues" flag="true">

 <Text>This class contains at least one tagged value.</Text>

 </HasValueChecker>

</IterationBlock>

Name Description Required?

flag : boolean The expected result of checking. If the actual result matches

the value specified by @flag, the child elements will be

processed.

Optional

property : string The name of property to check. Optional

modelType : string The result of evaluation will return a true only if the querying

model element contains the type of elements specified by

@modelType.

Optional

name : string The result of evaluation will return a true only if the querying

model element contains the elements with same name as

specified by @name.

Optional

Visual Paradigm Doc. Composer Writer’s Guide 87

4.7.7 <HasParentModelChecker>

The <HasParentModelChecker> element evaluates the querying model element to check if it is being

contained by a parent model element. If the result of evaluation is true, the child elements of

<HasParentModelChecker> will be processed. Otherwise, the child elements will be skipped.

The following example shows the use of <HasParentModelChecker> in a template.

The following table lists the available attributes of <HasParentModelChecker>.

4.7.8 <HasSubDiagramChecker>

The <HasSubDiagramChecker> element evaluates the querying model element to check if it contains

any sub-diagram. If the result of evaluation is true, the child elements of <HasSubDiagramChecker> will

be processed. Otherwise, the child elements will be skipped.

The following example shows the use of <HasSubDiagramChecker> in a template.

The following table lists the available attributes of <HasSubDiagramChecker>.

stereotypes : string The result of evaluation will return a true only if the querying

model element contains the elements that are extended from

the stereotypes specified by @stereotypes.

Optional

<IterationBlock modelType="Class">

 <HasParentModelChecker modelType="Package" flag="true">

 <Text>This class contains is contained by package: </Text>

 <ParentModel>

 <Property property="name"/>

 </ParentModel>

 </HasParentModelChecker>

</IterationBlock>

Name Description Required?

flag : boolean The expected result of checking. If the actual result matches

the value specified by @flag, the child elements will be

processed.

Optional

modelType : string The type of parent model element you want the model element

to be/not to be contained by.

Optional

<IterationBlock modelType="Class">

 <HasSubDiagramChecker diagramType="StateMachineDiagram" flag="true">

 <ForEachSubDiagram>

 <Property property="name"/>

 </ForEachSubDiagram>

 </HasSubDiagramChecker>

</IterationBlock>

Name Description Required?

Visual Paradigm Doc. Composer Writer’s Guide 88

4.7.9 <HasOwnerDiagramsChecker>

The <HasOwnerDiagramsChecker> element evaluates the querying model element to check if it has

been visualized in any diagram. If the result of evaluation is true, the child elements of

<HasOwnerDiagramsChecker> will be processed. Otherwise, the child elements will be skipped.

The following example shows the use of <HasOwnerDiagramsChecker> in a template.

The following table lists the available attributes of <HasOwnerDiagramsChecker>.

4.7.10 Checking Multiple Conditions with <Conditions>

The use of <...Checker> enables you to perform checking on single condition. Sometimes, you may

want to check for multiple conditions at a time. For example, you may want to output the name of all

public and static attributes of a class. In order to check for multiple conditions, use <Conditions>.

<...Checker> under <Conditions> will all be evaluated. If the result of evaluation are true for ALL

checkers, the subsequent elements will be evaluated. Otherwise, the parent iteration will continue to

next round.

Note that <Conditions> supports the type attribute, which enables you to specify the way how the result

of checkers are evaluated. The value "and" means that the result of checkers must all be positive in

order to continue, while the value "or" means that as long as there is one checker that returns a positive

result, the flow can continue.

The following example shows the use of <Conditions> in a template.

flag : boolean The expected result of checking. If the actual result matches

the value specified by @flag, the child elements will be

processed.

Optional

diagramType : string The type of sub-diagram you want the model element to

contain.

Optional

<IterationBlock modelType="BPTask">

 <HasOwnerDiagramsChecker diagramType="BusinessProcessDiagram" flag="true">

 <ForEachOwnerDiagram>

 <Property property="name"/>

 </ForEachOwnerDiagram>

 </HasOwnerDiagramsChecker>

</IterationBlock>

Name Description Required?

flag : boolean The expected result of checking. If the actual result matches

the value specified by @flag, the child elements will be

processed.

Optional

diagramType : string The type of diagram you want the owner diagram to be. Optional

<IterationBlock modelType="Attribute">

Visual Paradigm Doc. Composer Writer’s Guide 89

4.7.10.1 Using <...ConditionChecker> (e.g. <IterationBlockConditionChecker>,

<ForEachConditionChecker>, etc.)

The following lists out a set of <...ConditionChecker>.

 <IterationBlockConditionChecker>

 <ForEachConditionChecker>

 <ForEachRelationshipConditionChecker>

 <ForEachSimpleRelationshipConditionChecker>

 <ForEachEndRelationshipConditionChecker>

 <ForEachRelationshipEndConditionChecker>

 <ForEachSubDiagramConditionChecker>

 <ForEachOwnerDiagramConditionChecker>

 <ForEachDiagramConditionChecker>

 <ForEachDiagramElementConditionChecker>

 <ModelElementPropertyConditionChecker>

 <FromEndConditionChecker>

 <ToEndConditionChecker>

 <RelationshipEndEndRelationshipConditionChecker>

 <RelationshipEndOppositeEndConditionChecker>

 <DiagramPropertyConditionChecker>

 <DiagramElementPropertyConditionChecker>

 <ParentModelConditionChecker>

 <ParentShapeConditionChecker>

 <OwnerDiagramConditionChecker>

They all share similar usage so let's explain them together. To make it simple, let's explain with

<IterationBlockCondictionChecker>, using the example above.

Let's say we want to add a line "Public and static attributes" before we list out the attributes. Here is the

problem: If we place a <Text>Public and static attributes</Text> before <IterationBlock>, the line will

get output even without any public and static attributes. If we put the <Text> inside the <IterationBlock>

and below <Conditions>, the line will get output multiple times if there are multiple public and static

attributes.

To solve this problem, use <IterationBlockConditionChecker>. <IterationBlockConditionChecker>

enables you to check if there exists an element in an iteration, when certain conditions are applied. The

 <Conditions>

 <ValueChecker property="visibility" value="public" />

 <ValueChecker property="scope" value="classifier" />

 </Conditions>

 <Property property="name"/>

 <ParagraphBreak/>

</IterationBlock>

Visual Paradigm Doc. Composer Writer’s Guide 90

following example is the revised version of the above example. It will output a single line of title above

the list of attributes output within the <IterationBlock>.

4.7.10.2 Using <ConditionsChecker>

The use of <Conditions> allows the filtering of elements in a loop. But there are times that you want to

check against a querying model element instead of filtering elements in a looping. In such case, use

<ConditionsChecker>

The following example shows the use of <ConditionsChecker> in a template.

4.7.11 Using Nested Checkers in Propagated Checking

Sometimes, a checking requires the checking of not just the querying element, but certain property of

the querying element. Let's say we want to retrieve all public attributes from a class whose attribute

type has to be classes with names ended with 'Controller'. In order to handle such a complex checking,

we have to create a nested checker structure which involves the nested use of <...Checker> and

<Conditions>.

The following example shows the use of various checkers in a nested structure.

<IterationBlockConditionChecker>

 <Conditions>

 <ValueChecker property="visibility" value="public" />

 <ValueChecker property="scope" value="classifier" />

 </Conditions>

 <Text>Public and static attributes</Text>

 <ParagraphBreak/>

 <IterationBlock modelType="Attribute">

 <Conditions>

 <ValueChecker property="visibility" value="public" />

 <ValueChecker property="scope" value="classifier" />

 </Conditions>

 <Property property="name"/>

 <ParagraphBreak/>

 </IterationBlock>

<IterationBlockConditionChecker/>

<ElementBaseInitiationBlock>

 <ConditionsChecker>

 <Conditions type="and">

 <ValueChecker property="visibility" value="public" />

 <ValueChecker property="scope" value="classifier" />

 </Conditions>

 <Property property="name"/>

 <ParagraphBreak/>

 </ConditionsChecker>

</ElementBaseInitiationBlock>

Visual Paradigm Doc. Composer Writer’s Guide 91

4.8 Working with Table

4.8.1 <TableBlock>

Insert a table to document. It is typically used to present table of elements or element properties. You

must combine the use of <TableRow> and <TableCell> in order to form a complete table. Most of the

build-in templates are formed by tables and contains <TableBlock>. You can look for references easily.

<IterationBlock modelType="Attribute">

 <Conditions>

 <ValueChecker property="visibility" value="public" />

 <ModelElementPropertyConditionChecker property="type">

 <Conditions>

 <ValueChecker property="name" operator="like"

value="Controller" />

 <Conditions>

 </ModelElementPropertyConditionChecker>

 </Conditions>

 <Property property="name"/>

 <ParagraphBreak/>

</IterationBlock>

Name Description Required?

tableStyle : string Specify the table style by its ID. You can find the ID of table

styles in the Formats window of Doc. Composer.

Optional

tableWidth : string The width of table. For example: '50%' means to occupy 50%

of page width. There are four available units:

% (e.g. 50%)

cm (e.g. 10cm)

mm (e.g. 800mm)

px (e.g. 500px).

Optional

colWidths : integers Specify the widths of table columns in ratio, separate by

comma. Note that the number of columns specify in

@colWidths must match the number of <TableCell> to add

under <TableRow>, under this table.

For example, specify "1, 1, 2" for a table with 20000 as width

will result in creating a table with three columns, and have

widths 5000, 5000, 10000.

Optional

rowBackgroundColors :

color

Background color of rows in table. Optional

Visual Paradigm Doc. Composer Writer’s Guide 92

4.8.2 <TableRow>

Enables you to add rows to a <TableBlock>. Without <TableRow>, <TableBlock> is useless. You

should add <TableCell> to <TableRow> in order to complete a table.

4.8.3 <TableCell>

Enables you to add cells to a <TableRow>.

repeatTableHeader

{true | false |

followOption}

True to repeat the table header row at the top of the next

page for table that span multiple pages. Note that this option

only works in PDF and Word document.

If "followOption", it will follow the setting set in Doc.

Composer's document export window.

Optional

singlePage : Boolean =

false

True to ensure that a table will not be split in two or more

pages. When the remaining space of a page cannot display

the whole table, Doc. Composer will try to show it in the next

page. If the table height is longer than a page, the exceeding

part of the table will be cropped.

Optional

Name Description Required?

height : integer How tall it is for the table row. Optional

backgroundColor :

color

Background color of row. Optional

singlePage : boolean

= false

True to ensure that a table row will not be split in two or more

pages. When the remaining space of a page cannot display the

whole row, Doc. Composer will try to show it in the next page.

Optional

Name Description Required?

topBorderEnable :

boolean

True to draw the top border of cell. Optional

bottomBorderEnable :

Boolean

True to draw the bottom border of cell. Optional

leftBorderEnable :

Boolean

True to draw the left border of cell. Optional

rightBorderEnable :

Boolean

True to draw the right border of cell. Optional

verticalAlignment

{top | center | bottom}

The vertical alignment of cell. Optional

color : color The background color of cell. Optional

Visual Paradigm Doc. Composer Writer’s Guide 93

4.9 Image

4.9.1 <Image>

4.9.2 <Icon>

Icon of a model element type.

4.10 Break

4.10.1 <ParagraphBreak>

Enables you to add a break in document to separate text into paragraphs. <ParagraphBreak> does not

carry any text.

4.10.2 <PageBreak>

Enables you to insert a new page at where <PageBreak> is processed.

colspan : integer Specify the number of cell this cell consumes horizontally. For

example, a colspan of 2 means to consume this and the cell on

the right. This is equivalent to HTML’s colspan.

Optional

Name Description Required?

alignment

{left | center | right}

Set the alignment of image. Optional

width : string Set the width of image. It can be an absolute value (e.g.

"15500") or a scale to the original image width (e.g. "80%")

Optional

height : string Set the height of image. It can be an absolute value (e.g.

"15500") or a scale to the original image height (e.g. "80%")

Optional

maxWidth : integer Set the maximum width of image. Optional

maxHeight : integer Set the maximum height of image. Optional

rotate

{none | right | left}

Rotate the image to right (90 degree) or left (270 degree) Optional

keepWithPreviousInPDF :

boolean

Make sure the previous item will be shown in same page

with this item. (Used for PDF document only)

Optional

keepWithNext : boolean Make sure this item will be shown in same page with next

item. (Used for WORD document only)

Optional

Name Description Required?

alignment

{left | center | right}

Set the alignment of icon image. Optional

rotate

{none | right | left}

Rotate the image to right (90 degree) or left (270 degree) Optional

Visual Paradigm Doc. Composer Writer’s Guide 94

4.11 Other Constructs

4.11.1 <OwnerDiagram>

Retrieve the diagram in which a diagram element or the master view of a model element reside. For

example, class diagram "Domain Diagram" and "Security" both contain class "Login" (same model

element), while the master view is placed inside "Login", by applying <OwnerDiagram> on the "Login"

class, diagram "Domain Diagram" will be returned.

If you want to retrieve all the diagrams that own a model element, use <ForEachOwnerDiagram>

instead.

4.11.2 <ParentModel>

<ParentModel> serves two purposes. First, to retrieve the immediate parent element of a model

element or diagram. Second, to look for a specific type of parent element along the hierarchy.

Here is an example of how <ParentModel> can help you find the immediate parent element. For

example, class "Circle" is in package "Shape", by applying <ParentModel> on the "Circle" class, the

package "Shape" will be returned.

4.11.3 <ParentShape>

<ParentShape> serves two purposes. First, to retrieve the immediate parent shape of a shape. Second,

to look for a specific type of parent shape along the hierarchy.

Here is an example of how <ParentDiagram> can help you find the immediate parent element. For

example, class "Circle" is drawn in package "Shape", by applying <ParentParent> on the "Circle" class,

the package "Shape" will be returned.

4.12 Reusing Template with Inline or Reference

You may want to produce same content under different templates. If you duplicate the same template

code in multiple templates, you need to spend extra time and effort in keeping them consistent with

each other. In such a case, you can create one template, and reuse it in other templates. The reuse of

Name Description Required?

modelType : string Used in finding a specific type of parent along the hierarchy.

For example, if class "Shape" is in package "Shape" and

"Shape" is in model "Main", by applying <ParentModel

modelType="Model"> on "Circle", the model "Main" will be

returned.

Optional

Name Description Required?

shapeType : string Used in finding a specific type of parent along the hierarchy.

For example, if class "Shape" is drawn in package "Shape"

and "Shape" is drawn in model "Main", by applying

<ParentShape modelType="Model"> on "Circle", the model

"Main" will be returned.

Optional

Visual Paradigm Doc. Composer Writer’s Guide 95

template can be done by using <Reference> and <Inline>. The following example shows the use of

<Reference> and <Inline> in a template.

The example above means that when <Inline> is met, substitute that part with content written in the

Children (General) template. Same for <Reference>.

4.12.1 Inline vs Reference

Both <Inline> and <Reference> support the reuse of templates. They work nearly identically except one

important difference – The way they handle dynamic heading style.

Dynamic heading style, as its name suggest, supports the dynamic assignment of heading style to text

content. If you use <Inline> and in the referencing template a @heading+ is used, the leveling of active

heading style will be increased by one. Once the referencing template has ended and the flow flows

back to the source template, the leveling of heading style will remain as-is, which means, same as the

leveling used by the last heading defined in the referencing template.

What makes <Reference> different is that when its flow ends and flows back to the source template,

the leveling of heading style will be reset to that before entering the referencing template.

Let’s explain with an example. Here a template Bar.

Here is another template Foo. It references the Bar template above.

In Bar, several @heading+ has been used, which trigger the increases of the leveling of heading style.

You can expect that in the end the text Result printed by Foo will be in Heading 4 because it follows last

style used by the template referencing inline.

If we change <Inline> to <Reference>, the text Result will be in Heading 1, following the style last used

within Foo.

4.13 Using Variable

To favor template reusability, some of the template elements support the use of variable. User who

produce a document with a template that has variable defined will need to specify the value of the

variable in runtime to generate the outcome he/she expect.

<Inline template="Children (General)"/>

<Reference template="Children (General)"/>

<AnyBaseInitiationBlock>

 <Text style="@heading+">Heading</Text>

 <Text style="@heading+">Heading</Text>

 <Text style="@heading+">Heading</Text>

</AnyBaseInitiationBlock>

<DiagramBaseInitiationBlock>

 <Text style="@heading">Init</Text>

 <Inline template="Bar"/>

 <Text style="@heading">Result</Text>

</DiagramBaseInitiationBlock>

Visual Paradigm Doc. Composer Writer’s Guide 96

4.13.1 How does it work?

Let's take a look at the following example:

A template List of Operations has been written for element type 'Class' to output a list of operation

names from a given class. Let's say we want to output only operations with a specific visibility to be

decided by the person who produce the final document. This is the content of the template:

Pay attention to @value in <ValueChecker>. Instead of having the value of visibility hardcoded in the

template, a variable ${oper-visibility} is used.

In Doc. Composer, the person who want to output a document with the template will use the template

as usual by dragging it onto the document.

After that, he/she has to specify the value of the variable, which is, in this case the visibility of operation

expected. To do this, right click on the content block on the document and select Configure Local

Variables... from the popup menu.

<?xml version="1.0" encoding="UTF-8"?>

<ElementBaseInitiationBlock>

 <Text>List of operations:</Text>

 <ParagraphBreak/>

 <IterationBlock modelType="Operation">

 <ValueChecker property="visibility" operator="equals" value="${oper-visibility}">

 <Property property="name"></Property>

 <ParagraphBreak/>

 </ValueChecker>

 </IterationBlock>

</ElementBaseInitiationBlock>

Visual Paradigm Doc. Composer Writer’s Guide 97

In the Configure Local Variables window, enter the value of the variable. In this case, public is

entered. This means that the variable ${oper-visibility} will be replaced by the text 'public' when

producing content for this block.

When finished, click OK to confirm.

Besides entering the value, there is an option Follow Global in the configuration window. The value of

variable can be set locally and globally. Values set locally will be effective within a specific block of

content, while values set globally will be effective to the entire document. To make a variable follows

global setting, simply check Follow Global.

To enter the value of variables globally, click on the Configure Global Variables... button in the toolbar

of Doc. Composer and enter the value in the Configure Global Variables window.

Visual Paradigm Doc. Composer Writer’s Guide 98

4.13.2 Why variable?

To use variable instead of hard-coding a value gives you the following benefits.

4.13.2.1 Unifying the outcome

Instead of writing and maintaining a set of similar templates, you just need to write a single template

only. This ensures the consistency of similar content since they all come from a single source.

4.13.2.2 Let the 'user' of template decide what to output

The use of variable allows the person who produce the document decide what to output, instead of

forcing the editor of template to make the decision when writing the template, which is sometimes

impractical.

4.13.3 Elements that supports the use of variable

The following table lists the elements and the attributes that support the use of variable.

Element Attribute

TableBlock tableStyle

Text style, href

Property style

ForEachDiagram diagramType

ForEachSubDiagram diagramType

ForEachOwnerDiagram diagramType

HasDiagramChecker diagramType

HasSubDiagramChecker diagramType

HasOwnerDiagramsChecker diagramType

HasChildElementChecker stereotypes

HasRelationshipChecker modelTypes

HasParentModelChecker modelType

HasValueChecker stereotypes, modelType, name

IterationBlock stereotypes, name, modelTypes

ValueChecker value

Visual Paradigm Doc. Composer Writer’s Guide 99

Appendix A - DCTL Examples
Working with Use Case Scenario

Working with Sub-Diagrams

<ForEach property="stepContainers">

 <Property property="name"/>

 <TableBlock>

 <FlowOfEventIterationBlock> <!-- Walk through each step (row) in a scenario -->

 <TableRow>

 <TableCell>

 <FlowOfEventIndent/> <!-- Apply proper indentation to the current step. You

don't have to specify the level of indentation. It's automatically done for you -->

 <Property property="index" foreColor="#848284" style="Table Contents"/> <!-

- The step number. We set its foreColor to a lighter one to make it looks like how it

looks in Visual Paradigm -->

 <Text style="Table Contents"> </Text>

 <ValueChecker property="type" operator="not equals" value="">

 <ValueChecker property="type" operator="not equals" value="system">

 <Property property="type" foreColor="#00B200" style="Table

Contents"/> <!-- @type here refers to 'control labels' like if, then, elseif -->

 </ValueChecker>

 <ValueChecker property="type" operator="equals" value="system">

 <Property property="type" foreColor="#CA6400" style="Table

Contents"/> <!-- @type here refers to SYSTEM -->

 </ValueChecker>

 </ValueChecker>

 <Property property="name" style="Table Contents"/> <!-- The content of step

-->

 </TableCell>

 </TableRow>

 </FlowOfEventIterationBlock>

 </TableBlock>

</ForEach>

<HasSubDiagramChecker>

 <!-- Name of all sub-diagrams -->

 <ForEachSubDiagram>

 <Property property="name" />

 <ParagraphBreak/>

 </ForEachSubDiagram >

 <!-- Name of all sub-BPD -->

 <ForEachSubDiagram diagramType="BusinessProcessDiagram">

 <Property property="name" />

 <ParagraphBreak/>

 </ForEachSubDiagram >

</HasSubDiagramChecker>

Visual Paradigm Doc. Composer Writer’s Guide 100

Working with References

Working with Stereotypes and Tagged Values

<!-- Output the name of all Use Case reference -->

<HasValueChecker property="references">

 <ForEach property="references">

 <ValueChecker property="type" operator="equals" value="Model Element">

 <ModelElementProperty property="url">

 <ValueChecker property="modelType" operator="equals" value="UseCase">

 <Property property="name" />

 </ValueChecker>

 </ModelElementProperty>

 </ValueChecker>

 </ForEach>

</HasValueChecker>

<!-- Output the name of all model elements that are referencing the querying element as

'Model Element Reference' -->

<HasValueChecker property="modelElementReferencedBys">

 <ForEach property="modelElementReferencedBys">

 <Property property="name"/>

 </ForEach>

</HasValueChecker>

<!-- Output the name of all model elements that are referencing the querying element as

'Shape Reference' -->

<HasValueChecker property="viewReferencedBys">

 <ForEach property="viewReferencedBys">

 <Property property="name"/>

 </ForEach>

</HasValueChecker>

<!-- Output the name of all assigned stereotypes -->

<HasValueChecker property="stereotypes">

 <ForEach property="stereotypes" ignoreLastSeparator="true">

 <Text><<</Text>

 <Property property="name" />

 <Text>>></Text>

 </ForEach>

</HasValueChecker>

<ParagraphBreak/>

<!-- Output the name of tagged values added -->

<HasValueChecker property="taggedValues">

 <ModelElementProperty property="taggedValues">

 <HasChildElementChecker modelType="TaggedValue">

 <IterationBlock modelType="TaggedValue">

 <Property property="name" />

 <Text> - </Text>

 <Property property="value" />

 </IterationBlock>

 </HasChildElementChecker>

 </ModelElementProperty>

Visual Paradigm Doc. Composer Writer’s Guide 101

Working with Table Records of Entity

Working with Working Procedures of BPMN Task/Sub-Process

</HasValueChecker>

<!-- Check if an entity (i.e. DBTable) has record specified -->

<HasValueChecker property="records">

 <TableBlock>

 <!-- Create a header row that shows the columns' name in each cell -->

 <TableRow>

 <IterationBlock modelType = "DBColumn">

 <TableCell>

 <Property property="name" />

 </TableCell>

 </IterationBlock>

 </TableRow>

 <!-- Create one row for each record -->

 <ModelElementProperty property="records">

 <IterationBlock modelType = "EntityRecord">

 <TableRow>

 <IterationBlock modelType = "EntityRecordCell">

 <TableCell>

 <!-- Output the value directly if it's a general column -->

 <Property property="value" />

 <!-- Use the following method to output the value if it's a FK -->

 <HasValueChecker property="value" flag="true">

 <ModelElementProperty property="value">

 <Property property="value" />

 </ModelElementProperty>

 </HasValueChecker>

 </TableCell>

 </IterationBlock>

 </TableRow>

 </IterationBlock>

 </ModelElementProperty>

 </TableBlock>

</HasValueChecker>

<!-- Check if a BPMN task/sub-process has working procedure entered -->

<HasValueChecker property="bpProcedures">

 <!-- Retrieve the procedure steps -->

 <ForEach property="bpProcedures">

 <Property property="name" style="@heading"/>

 <ParagraphBreak/>

 <!-- Retrieve the steps in the querying procedure set -->

 <ForEach property="bpProcedureSteps">

 <Property property="name"/>

 <ParagraphBreak/>

 </ForEach>

 </ForEach>

Visual Paradigm Doc. Composer Writer’s Guide 102

Working with Action and Action’s Type

<HasChildElementChecker flag="true">

 <TableBlock colWidths="1,2" tableWidth="14500" alignment="right">

 <TableRow>

 <TableCell leftBorderEnable="false" rightBorderEnable="false" color="230, 230,

230">

 <Text style="Column header 1">Element</Text>

 </TableCell>

 <TableCell leftBorderEnable="false" rightBorderEnable="false" color="230, 230,

230">

 <Text style="Column header 1">Description</Text>

 </TableCell>

 </TableRow>

 <IterationBlock modelType="ActivityAction">

 <!-- Sort the activities by name. -->

 <Sortings>

 <Sorting by="name"></Sorting>

 </Sortings>

 <ValueChecker property="modelType" operator="not equals" value="">

 <TableRow>

 <TableCell leftBorderEnable="false" rightBorderEnable="false">

 <Property property="name" style="Table Contents"/>

 </TableCell>

 <TableCell leftBorderEnable="false" rightBorderEnable="false">

 <ValueChecker property = "documentation" operator = "NOT EQUAL" value =

"">

 <Property property="documentation" style="Table Contents"/>

 <ParagraphBreak/>

 <ParagraphBreak/>

 </ValueChecker>

 <ModelElementProperty property="actionType">

 <!-- Call Behavior Action -->

 <ValueChecker property="modelType" operator="equals"

value="CallBehaviorAction">

 <Text style="Table Contents">Call action:</Text>

 <HasValueChecker property="behavior" flag="true">

 <ModelElementProperty property="behavior">

 <Property property="name" style="TableContents"

isBold="true"/>

 </ModelElementProperty>

 </HasValueChecker>

 <HasValueChecker property="behavior" flag="false">

 <Text style="Table Contents"><Unspecified></Text>

 </HasValueChecker>

 </ValueChecker>

 <!-- Call Operation Action -->

</HasValueChecker>

Visual Paradigm Doc. Composer Writer’s Guide 103

 <ValueChecker property="modelType" operator="equals"

value="CallOperationAction">

 <Text style="Table Contents">Call operation:</Text>

 <HasValueChecker property="operation" flag="true">

 <ModelElementProperty property="operation">

 <ParentModel>

 <Property property="name" style="Table Contents"

isBold="true"/>

 </ParentModel>

 <Text style="Table Contents">.</Text>

 <Property property="name" style="Table Contents"

isBold="true"/>

 </ModelElementProperty>

 </HasValueChecker>

 <HasValueChecker property="operation" flag="false">

 <Text style="Table Contents"><Unspecified></Text>

 </HasValueChecker>

 </ValueChecker>

 </ModelElementProperty>

 </TableCell>

 </TableRow>

 </ValueChecker>

 </IterationBlock>

 </TableBlock>

</HasChildElementChecker>

Working with Chart Relations

<!—Chart Relations -->

<HasValueChecker property="chartRelations">

 <Text style="@heading+">Chart Relations</Text>

 <ParagraphBreak/>

 <TableBlock tableStyle="Summaries" colWidths="20, 80">

 <TableRow>

 <TableCell>

 <Text>Code</Text>

 </TableCell>

 <TableCell>

 <Text>Begins</Text>

 </TableCell>

 <TableCell>

 <Text>Ends</Text>

 </TableCell>

 </TableRow>

 <ForEach property="chartRelations">

 <TableRow>

 <TableCell>

 <ModelElementProperty property="code">

 <Property property="code"/>

 </ModelElementProperty>

 </TableCell>

Visual Paradigm Doc. Composer Writer’s Guide 104

Working with Model Transitor

 <TableCell>

 <ModelElementProperty property="from">

 <Icon/>

 <Property property="name"/>

 </ModelElementProperty>

 </TableCell>

 <TableCell>

 <ModelElementProperty property="to">

 <Icon/>

 <Property property="name"/>

 </ModelElementProperty>

 </TableCell>

 </TableRow>

 </ForEach>

 </TableBlock>

</HasValueChecker>

<!-- Check if the querying element has transition, either from/to -->

<HasValueChecker property="traceability">

 <Text>Traceability detected.</Text>

 <ParagraphBreak/>

</HasValueChecker>

<ParagraphBreak/>

<!-- List out the Transit From elements -->

<Text isBold="true">Transit From:</Text>

<ParagraphBreak/>

<ForEach property="transitFrom">

 <Property property="name"/>

 <ParagraphBreak/>

</ForEach>

<ParagraphBreak/>

<!-- List out the Transit To elements -->

<Text isBold="true">Transit To:</Text>

<ParagraphBreak/>

<ForEach property="transitTo">

 <Property property="name"/>

 <ParagraphBreak/>

</ForEach>

<ParagraphBreak/>

<!-- List out the Transit From diagrams -->

<Text isBold="true">Transit From (Diagram):</Text>

<ParagraphBreak/>

<ForEachDiagram property="transitFrom">

 <Property property="name"/>

 <ParagraphBreak/>

</ForEachDiagram>

<ParagraphBreak/>

<!-- List out the Transit To diagrams -->

Visual Paradigm Doc. Composer Writer’s Guide 105

<Text isBold="true">Transit To (Diagram):</Text>

<ParagraphBreak/>

<ForEachDiagram property="transitTo">

 <Property property="name"/>

 <ParagraphBreak/>

</ForEachDiagram>

<ParagraphBreak/>

Visual Paradigm Doc. Composer Writer’s Guide 106

Working with InstanceSpecification in an Object Diagram

<!-- Print the description of instanceSpecifications and their classifiers, in a given

object diagram-->

<DiagramBaseInitiationBlock>

 <IterationBlock modelType="InstanceSpecification">

 <!-- Name of instance (in ${instance_name} : ${classifier} format)-->

 <Property property="name"/>

 <Text> : </Text>

 <HasValueChecker property="classifiers">

 <ForEach property="classifiers">

 <Property property="name" />

 </ForEach>

 </HasValueChecker>

 <!-- Description of class-->

 <ParagraphBreak/>

 <Text isBold="true">Description of classifier: </Text>

 <HasValueChecker property="classifiers">

 <ForEach property="classifiers">

 <Property property="description" />

 </ForEach>

 </HasValueChecker>

 <!-- Description of instance-->

 <ParagraphBreak/>

 <Text isBold="true">Description of instance: </Text>

 <Property property="description"/>

 <ParagraphBreak/>

 <ParagraphBreak/>

 </IterationBlock>

</DiagramBaseInitiationBlock>

Visual Paradigm Doc. Composer Writer’s Guide 107

Appendix B – Diagram Types
The following table contains all the diagram types available in Visual Paradigm 15.0. When you need to

query a specific type of diagram with DCTL, make sure the value presented in the second column is

used. Please be aware that the list is version specific, so you may not find all of them in previous

versions. The diagram types are ordered following the Diagram Navigator, so that you can easily locate

the diagram type you want.

Display Diagram Type Diagram Type to Use in Fields/Templates

Use Case Diagram UseCaseDiagram

Class Diagram ClassDiagram

Sequence Diagram InteractionDiagram

Communication Diagram CommunicationDiagram

State Machine Diagram StateDiagram

Activity Diagram ActivityDiagram

Component Diagram ComponentDiagram

Deployment Diagram DeploymentDiagram

Package Diagram PackageDiagram

Object Diagram ObjectDiagram

Composite Structure Diagram CompositeStructureDiagram

Timing Diagram TimingDiagram

Interaction Overview Diagram InteractionOverviewDiagram

Textual Analysis TextualAnalysis

Requirement Diagram RequirementDiagram

Business Concept Diagram FreehandDiagram2

CRC Card Diagram CRCCardDiagram

Android Tablet Wireframe WFAndroidTabletDiagram

Android Phone Wireframe WFAndroidPhoneDiagram

Desktop Wireframe WFDesktopDiagram

iPad Wireframe WFIPadDiagram

iPhone Wireframe WFIPhoneDiagram

Web Wireframe WFWebDiagram

Visual Paradigm Doc. Composer Writer’s Guide 108

Entity Relationship Diagram ERDiagram

ORM Diagram ORMDiagram

Business Process Diagram BusinessProcessDiagram

Conversation Diagram ConversationDiagram

Data Flow Diagram DataFlowDiagram

EPC Diagram EPCDiagram

Process Overview Diagram ProcessMapDiagram

Organization Chart OrganizationChart

Fact Model FactDiagram

Decision Table DTBDecisionTableEditorDiagram

Block Definition Diagram BlockDefinitionDiagram

Internal Block Diagram InternalBlockDiagram

Parametric Diagram ParametricDiagram

Zachman Framework ZachmanDiagram

Migration Roadmap MigrationRoadmap

Business Motivation Model Diagram BusinessMotivationModelDiagram

ArchiMate Diagram ArchiMateDiagram

Radar Chart MaturityAnalysis

Implementation Plan Diagram ArchitectureRoadmap

Enhanced PERT Chart PERTChart

Breakdown Structure Diagram BreakdownStructure

Cause and Effect Diagram FishboneDiagram

Service Interface Diagram SoaMLServiceInterfaceDiagram

Service Participant Diagram SoaMLServiceParticipantDiagram

Service Contract Diagram SoaMLServiceContractDiagram

Services Architecture Diagram SoaMLServicesArchitectureDiagram

Service Categorization Diagram SoaMLServiceCategorizationDiagram

CMMN Diagram CMMNDiagram

Matrix Diagram MatrixDiagram

Visual Paradigm Doc. Composer Writer’s Guide 109

Analysis Diagram AnalysisDiagram

Chart Diagram ChartDiagram

Overview Diagram OverviewDiagram

User Interface Diagram UserInterfaceDiagram

Mind Mapping Diagram MindMapDiagram

Grid GridDiagram

Brainstorm Brainstorm

Profile Diagram ProfileDiagram

Documentation Cabinet DocumentationCabinet

Doc. Composer Document ReportDiagram

